The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Nort...The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.展开更多
In order to promote the winter wheat yield and guarantee seeding quality in double-cropping system,no-tillage or reduced tillage planting modes with different row spacing have been implemented to result in different l...In order to promote the winter wheat yield and guarantee seeding quality in double-cropping system,no-tillage or reduced tillage planting modes with different row spacing have been implemented to result in different levels of yield.A three-year(2012-2015)field experiment was conducted on the experimental farm at Zhuozhou of Hebei Province in North China Plain to compare winter wheat yield from the two planting modes:wide-narrow row space planting mode(WN)and uniform row space planting mode(UR)Both planting modes were performed under reduced tillage conditions with straw mulching.The results showed that in North China Plain WN had positive impacts on crop yield,yield components,leaf area index(LAI)and intercepted photosynthetically active radiation(IPAR)index.Comparing with the UR,IPAR and LAI index for WN were enhanced by 4.8%and 5.2%,respectively.The average yield for WN was 7.2%,significantly greater than that of UR under the same quantity and density.In addition,for WN mode,machinery could pass through with less blocking under large amount of straw mulching,which largely improved tillage efficiency and potentially popularized the conservation tillage technology in North China plain.It is therefore recommended that wide-narrow row space planting mode(WN)combined with reduced tillage and straw mulching be more suitable for conservation tillage in double-cropping pattern areas in North China Plain.展开更多
A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information...A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information is available on the optimized water and nitrogen management for yield formation,especially the grain-filling process,under HLSC mode.A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters,grain weight percentage of spike weight(GPS),spike moisture content(SMC),and winter wheat yield to water and nitrogen rates.The four nitrogen rates were N1(360 kg ha^(-1) pure N),N2(300 kg ha^(-1) pure N),N3(240 kg ha^(-1) pure N),and N4(180 kg ha^(-1) pure N),respectively,and the three irrigation quotas were W1(120 mm),W2(90 mm),and W3(60 mm),respectively.Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight(0.989<R^(2)<0.999,where R2 is the determination coefficient).The occurrence time of maximum filling rate(T_(max))and active grain-filling period(AGP)increased with the increase in the water or nitrogen rate,whereas the average grain-filling rate(G_(mean))had a decreasing trend.The final 1,000-grain weight(FTGW)increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.Nitrogen,irrigation,and year significantly affected the T_(max),AGP,G_(mean),and FTGW.Particularly,the AGP and FTGW were insignificantly different between high seedbed(HLSC-H)and low seedbed(HLSC-L)across the water and nitrogen levels.Moreover,the moderate water and nitrogen supply was more beneficial for grain yield,as well as for spike number and grain number per hectare.The principal component analysis indicated that combining 240-300 kg N ha^(-1) and 90^(-1)20 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat.展开更多
The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass...The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield.展开更多
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
[Objective] This study aimed to investigate the effects of long-term differ- ent fertilization in three types of soils on wheat yield and soil nutrient variation in Shandong Province. [Method] A 30-year located experi...[Objective] This study aimed to investigate the effects of long-term differ- ent fertilization in three types of soils on wheat yield and soil nutrient variation in Shandong Province. [Method] A 30-year located experiment in Jinan of Shandong Province was selected and the results of soil nutrient and crop yield in 1984, 1987, 1988, 1989, 1990, 2001, 2005, 2006, 2007 and 2010 were measured and collected. In this study, five treatments: CK, NP, NK, PK and NPK of the located experiment were selected. [Result] The three types of soils in wheat yields decreased signifi- cantly in the first several years and in 2006. Wheat yields of the treatments with P fertilizers were obviously higher than those without P fertilizers; it was shown that phosphorus is the primary nutritional factor for high-yielding of wheat. The highest yield is from cinnamon soil, followed by that from brown soil, and the lowest pro- duction is from fluvo-aquic soil. Under the same fertilization, the influence of other factors on wheat yield of brown soil is the smallest, while cinnamon soil is vulnera- ble to the influence of external conditions, resulting in larger fluctuation of annual wheat yield. The alkali-hydro nitrogen contents of three kinds of soils first de- creased, then raised, and at last reduced apparently. Since 2007, the change of al- kali-hydro nitrogen content appeared rebounded. The available P contents of no- phosphorus treatments decreased over time while those of the treatments with P fertilizers increased at first, then decreased, and after that kept relatively stable. The available K contents of no K treatments decreased slowly. The treatments of PK and NK had higher available K content than NPK treatment. [Conclusion] Thus, it is an effective fertilization measure to improve the wheat yield by supplying reasonable phosphate fertilizer and nitrogen fertilizer and making up potassium fertilizer.展开更多
The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model...The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model. With Shou County and Huaiyuan County of Anhui Province as the experimental fields of winter wheat producing areas, the linear winter wheat yield estimating models were established by adopting backscattering coefficient and Normalized Difference Vegetation Index(NDVI) based on images from the synthetic aperture radar(SAR)—RDARSAT-2 and HJ satellite photographed in mid-April and early May, 2014, and then comparisons were conducted on the accuracy of the yield estimating models. The accuracies of the yield estimating models established using co-polarized(HH) and cross-polarized(HV) modes of SAR in Jiangou Town, Shou County were 68.37% and 74.01%, respectively, while the accuracies in Longkang Town, Huaiyuan County were 63.10%and 69.10%, respectively. Accuracies of yield estimating models established by HJ satellite data were 69.52% and 66.43% in Shou County and Huaiyuan County, respectively. Accuracies of winter yield estimating model based on HJ satellite data and that based on SAR were closed, and the yield difference of winter wheat in the lodging region was analyzed in detail. The model results laid the foundation and accumulated experience for the verification, parameters correction and promotion of the winter wheat yield estimating model.展开更多
To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fe...To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fertilizers on wheat grain yield and yield stability on the Loess Plateau using regression and stability analysis. The experiment consisted of 17 fertilizer treatments, containing the combinations of different N and P levels, with three replications arranged in a randomized complete block design. Nitrogen fertilizer was applied as urea, and P was applied as calcium superphosphate. Fertilizer rates had a large effect on the response of wheat yield to fertilization. Phosphorus, combined with N, increased yield significantly (P 〈 0.01). In the unfertilized control and the N or P sole application treatments, wheat yield had a declining trend although it was not statistically significant. Stability analysis combined with the trend analysis indicated that integrated use of fertilizer N and P was better than their sole application in increasing and sustaining the productivity of rainfed winter wheat.展开更多
Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field exper...Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.展开更多
Long-term fertility experiments have become an important tool for investigating the sustainability of cropping systems. Therefore, a long-term (18-year) fertilization experiment was conducted in Changwu County, Shaanx...Long-term fertility experiments have become an important tool for investigating the sustainability of cropping systems. Therefore, a long-term (18-year) fertilization experiment was conducted in Changwu County, Shaanxi Province, China, to ascertain the effect of the long-term application of chemical fertilizers and manure on wheat yield and soil fertility in the Loess Plateau, so as to provide a scientific basis for sustainable land management. The experiment consisted of nine fertilizer treatments with thr…展开更多
Accurate estimation of regional-scale crop yield under drought conditions allows farmers and agricultural agencies to make well-informed decisions and guide agronomic management. However, few studies have focused on u...Accurate estimation of regional-scale crop yield under drought conditions allows farmers and agricultural agencies to make well-informed decisions and guide agronomic management. However, few studies have focused on using the crop model data assimilation(CMDA) method for regional-scale winter wheat yield estimation under drought stress and partial-irrigation conditions. In this study, we developed a CMDA framework to integrate remotely sensed water stress factor(MOD16 ET PET) with the WOFOST model using an ensemble Kalman filter(En KF) for winter wheat yield estimation at the regional scale in the North China Plain(NCP) during 2008–2018. According to our results, integration of MOD16 ET PETwith the WOFOST model produced more accurate estimates of regional winter wheat yield than open-loop simulation. The correlation coefficient of simulated yield with statistical yield increased for each year and error decreased in most years, with r ranging from 0.28 to 0.65 and RMSE ranging from 700.08 to1966.12 kg ha. Yield estimation using the CMDA method was more suitable in drought years(r = 0.47, RMSE = 919.04 kg ha) than in normal years(r = 0.30, RMSE = 1215.51 kg ha). Our approach performed better in yield estimation under drought conditions than the conventional empirical correlation method using vegetation condition index(VCI). This research highlighted the potential of assimilating remotely sensed water stress factor, which can account for irrigation benefit, into crop model for improving the accuracy of winter wheat yield estimation at the regional scale especially under drought conditions, and this approach can be easily adapted to other regions and crops.展开更多
Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field expe...Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrilfuvents) in D. I. Khan, Pakistan, to explore the impact of six tillage methods (zero tillage straw retained (ZTsr), ZT straw burnt (ZTsb), reduced tillage straw incorporated (RTsi, including tiller and rotavator), RT straw burnt (RTsb), conventional tillage straw incorporated (CTsi, including disc plow, tiller, rotavator, and leveling operations), CT straw burnt (CTsb)) and ifve nitrogen rates, i.e., 0, 100, 150, 200, and 250 kg ha-1 on wheat yield. Mean values for N revealed that spikes m-2, grains/spike, 1 000-grain weight (g), and grain yield (kg ha-1) were signiifcantly higher at 200 kg N ha-1 in both the years as well as mean over years than all other treatments. Mean values for tillage revealed that ZTsr produced highest number of spikes m-2 among tillage methods. However, grains/spike, 1 000-grain weight, and grain yield were higher in tillage methods with either straw retained/incorporated than tillage methods with straw burnt. Interaction effects were signiifcant in year 1 and in mean over years regarding spikes m-2, 1 000-grain weight, total soil organic matter (SOM), and total soil N (TSN). ZTsr produced the most spikes m-2 and 1 000-grain weight at 200 kg N ha-1. ZTsr also produced higher SOM and TSN at 200-250 kg N ha-1 at the end of 2 yr cropping. Thus ZTsr with 200 kg N ha-1 may be an optimum and sustainable approach to enhance wheat yield and soil quality in rice-wheat system.展开更多
To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) v...To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) values. The performances of the calibrated crop environment resource synthesis for wheat (CERES-Wheat) model for two different assimilation scenarios were compared by employing ensemble Kalman filter (EnKF)-based strategies. The uncertainty factors of the crop model data assimilation was analyzed by considering the observation errors, assimilation stages and temporal-spatial scales. Overalll the results indicated a better yield estimate performance when the EnKF-based strategy was used to comprehen- sively consider several factors in the initial conditions and observations. When using this strategy, an adjusted coefficients of determination (R2) of 0.84, a root mean square error (RMSE) of 323 kg ha-1, and a relative errors (RE) of 4.15% were obtained at the field plot scale and an R2 of 0.81, an RMSE of 362 kg ha-1, and an RE of 4.52% were obtained at the pixel scale of 30 mx30 m. With increasing observation errors, the accuracy of the yield estimates obviously decreased, but an acceptable estimate was observed when the observation errors were within 20%. Winter wheat yield estimates could be improved significantly by assimilating observations from the middle to the end of the crop growing seasons. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. It is important to consider reasonable temporal-spatial scales and assimilation stages to obtain tradeoffs between accuracy and computation time, especially in operational systems used for regional crop yield estimates.展开更多
Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).Drip fertigation is considered to b...Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).Drip fertigation is considered to be an effective method for improving N use efficiency and reducing losses,while the performance of drip fertigation in winter wheat is limited by poor N scheduling.A two-year field experiment was conducted to evaluate the growth,development and yield of drip-fertigated winter wheat under different split urea (46%N,240 kg ha^(-1)) applications.The six treatments consisted of five fertigation N application scheduling programs and one slow-release fertilizer (SRF) application.The five N scheduling treatments were N0–100 (0%at sowing and 100%at jointing/booting),N25–75 (25%at sowing and 75%at jointing and booting),N50–50(50%at sowing and 50%at jointing/booting),N75–25 (75%at sowing and 25 at jointing/booting),and N100–0 (100%at sowing and 0%at jointing/booting).The SRF (43%N,240 kg ha^(-1)) was only used as fertilizer at sowing.Split N application significantly (P<0.05) affected wheat grain yield,yield components,aboveground biomass (ABM),water use efficiency(WUE) and nitrogen partial factor productivity (NPFP).The N50–50 and SRF treatments respectively had the highest yield(8.84 and 8.85 t ha^(-1)),ABM (20.67 and 20.83 t ha^(-1)),WUE (2.28 and 2.17 kg m^(-3)) and NPFP (36.82 and 36.88 kg kg^(-1)).This work provided substantial evidence that urea-N applied in equal splits between basal and topdressing doses compete economically with the highly expensive SRF for fertilization of winter wheat crops.Although the single-dose SRF could reduce labor costs involved with the traditional method of manual spreading,the drip fertigation system used in this study with the N50–50 treatment provides an option for farmers to maintain wheat production in the NCP.展开更多
To understand the contribution of ear photosynthesis to grain yield and its response to water supply in the improvement of winter wheat, 15 cultivars released from 1980 to 2012 in North China Plain(NCP) were planted...To understand the contribution of ear photosynthesis to grain yield and its response to water supply in the improvement of winter wheat, 15 cultivars released from 1980 to 2012 in North China Plain(NCP) were planted under rainfed and irrigated conditions from 2011 to 2013, and the ear photosynthesis was tested by ear shading. During the past 30 years, grain yield significantly increased, the flag leaf area slightly increased under irrigated condition but decreased significantly under rainfed condition, the ratio of grain weight:leaf area significantly increased, and the contribution of ear photosynthesis to grain yield changed from 33.6 to 64.5% and from 32.2 to 57.2% under rainfed and irrigated conditions, respectively. Grain yield, yield components, and ratio of grain weight:leaf area were positively related with contribution of ear photosynthesis. The increase in grain yield in winter wheat was related with improvement in ear photosynthesis contribution in NCP, especially under rainfed condition.展开更多
Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to ac...Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security.展开更多
Conservational tillage (CT) in combination with broad spectrum herbicide may be more efficient and economical in controlling weeds, reducing cost of cultivation, and enhancing wheat yield. Field experiments were car...Conservational tillage (CT) in combination with broad spectrum herbicide may be more efficient and economical in controlling weeds, reducing cost of cultivation, and enhancing wheat yield. Field experiments were carried out to evaluate the effect of tillage and herbicides on weeds and wheat yield under rice-wheat cropping system (RWCS). The results indicated that broad spectrum herbicides particularly, carfentrazone ethyl ester+ isoproturon (Affinity 50 WDG) reduced weeds density by 93 and 95% compared to control and also produced the maximum grain yield (6 818 and 6 996 kg ha-l) and HI (harvest index, 44.7 and 44.6%) in 2007-2008 and 2008-2009 growing seasons, respectively. The maximum weeds infestation and the lowest yield were recorded in control. Tillage methods significantly influenced grain yield and HI, while no significant effect on all other parameters. The overall mean yield was significantly higher in zero tillage (5 575 kg ha-l) and reduced tillage (5 584 kg ha-l) compared to CT (5 479 kg ha-^-1). Besides increasing wheat yield, Affinity 50 WDG and zero tillage are important weed management practices that can be integrated into wheat production in RWCS. However, in case of perennial weeds or insect pests' infestation, CT in combination with Affinity 50 WDG would be more productive than conservation tillage.展开更多
A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Results of the experiment showed that the correlation between wheat y...A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Results of the experiment showed that the correlation between wheat yield and water consumption was not significant, but that between wheat yield and the ratio of water supply to Penman evaporation was significant, following a parabolic curve. The water consumption process,as well as the growing season of wheat plant, could be divided into three periods. The first (154 days) was vegetative growth period, during which the water consumption accounted for 35% of the total; the second (65 days) reproductive growth period, during which the water consumption occupied 57%, indicating the importance of water consumption in this period; and the third (5~9 days) maturation period, during which water supply was not important to yield formation. According to the statistics of meteorological data over the years in this region, the hydrological conditions of the five seasons covered a probability range of 74.8%.The results (3.46~5.63 t ha-1) indicated that the productivity of the wheat field under rainfed conditions in this region had a degree of confidence of 74.8%.展开更多
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China...With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha-(-1); N2, 200 kg N ha-(-1); N3, 300 kg N ha-(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha-(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.展开更多
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no...Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.展开更多
基金This work was supported by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(52179046).
文摘The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.
基金This study was financially supported by the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture,China(Grant No.201503136)Modern Agricultural Industry Technology System(Grant No.CARS-03)the Program for Changjiang Scholars and Innovative Research Team in University of China(Grant No.IRT13039).
文摘In order to promote the winter wheat yield and guarantee seeding quality in double-cropping system,no-tillage or reduced tillage planting modes with different row spacing have been implemented to result in different levels of yield.A three-year(2012-2015)field experiment was conducted on the experimental farm at Zhuozhou of Hebei Province in North China Plain to compare winter wheat yield from the two planting modes:wide-narrow row space planting mode(WN)and uniform row space planting mode(UR)Both planting modes were performed under reduced tillage conditions with straw mulching.The results showed that in North China Plain WN had positive impacts on crop yield,yield components,leaf area index(LAI)and intercepted photosynthetically active radiation(IPAR)index.Comparing with the UR,IPAR and LAI index for WN were enhanced by 4.8%and 5.2%,respectively.The average yield for WN was 7.2%,significantly greater than that of UR under the same quantity and density.In addition,for WN mode,machinery could pass through with less blocking under large amount of straw mulching,which largely improved tillage efficiency and potentially popularized the conservation tillage technology in North China plain.It is therefore recommended that wide-narrow row space planting mode(WN)combined with reduced tillage and straw mulching be more suitable for conservation tillage in double-cropping pattern areas in North China Plain.
基金supported by the National Key Research and Development Program of China(2023YFD1900802)the China Agriculture Research System of MOF and MARA(CARS-03-19)+2 种基金the National Natural Science Foundation of China(51879267)the Central Public-interest Scientific Institution Basal Research Fund,China(IFI2023-13)the Agricultural Science and Technology Innovation Program(ASTIP),Chinese Academy of Agricultural Sciences。
文摘A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information is available on the optimized water and nitrogen management for yield formation,especially the grain-filling process,under HLSC mode.A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters,grain weight percentage of spike weight(GPS),spike moisture content(SMC),and winter wheat yield to water and nitrogen rates.The four nitrogen rates were N1(360 kg ha^(-1) pure N),N2(300 kg ha^(-1) pure N),N3(240 kg ha^(-1) pure N),and N4(180 kg ha^(-1) pure N),respectively,and the three irrigation quotas were W1(120 mm),W2(90 mm),and W3(60 mm),respectively.Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight(0.989<R^(2)<0.999,where R2 is the determination coefficient).The occurrence time of maximum filling rate(T_(max))and active grain-filling period(AGP)increased with the increase in the water or nitrogen rate,whereas the average grain-filling rate(G_(mean))had a decreasing trend.The final 1,000-grain weight(FTGW)increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.Nitrogen,irrigation,and year significantly affected the T_(max),AGP,G_(mean),and FTGW.Particularly,the AGP and FTGW were insignificantly different between high seedbed(HLSC-H)and low seedbed(HLSC-L)across the water and nitrogen levels.Moreover,the moderate water and nitrogen supply was more beneficial for grain yield,as well as for spike number and grain number per hectare.The principal component analysis indicated that combining 240-300 kg N ha^(-1) and 90^(-1)20 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat.
基金supported by the National Natural Science Foundation of China(42101382 and 42201407)the Shandong Provincial Natural Science Foundation China(ZR2020QD016 and ZR2022QD120)。
文摘The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield.
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201203030,201203050)Special Fund for "Taishan Scholar" Construction Engineering "Agricultural Nonpoint Source Pollution Prevention and Control"~~
文摘[Objective] This study aimed to investigate the effects of long-term differ- ent fertilization in three types of soils on wheat yield and soil nutrient variation in Shandong Province. [Method] A 30-year located experiment in Jinan of Shandong Province was selected and the results of soil nutrient and crop yield in 1984, 1987, 1988, 1989, 1990, 2001, 2005, 2006, 2007 and 2010 were measured and collected. In this study, five treatments: CK, NP, NK, PK and NPK of the located experiment were selected. [Result] The three types of soils in wheat yields decreased signifi- cantly in the first several years and in 2006. Wheat yields of the treatments with P fertilizers were obviously higher than those without P fertilizers; it was shown that phosphorus is the primary nutritional factor for high-yielding of wheat. The highest yield is from cinnamon soil, followed by that from brown soil, and the lowest pro- duction is from fluvo-aquic soil. Under the same fertilization, the influence of other factors on wheat yield of brown soil is the smallest, while cinnamon soil is vulnera- ble to the influence of external conditions, resulting in larger fluctuation of annual wheat yield. The alkali-hydro nitrogen contents of three kinds of soils first de- creased, then raised, and at last reduced apparently. Since 2007, the change of al- kali-hydro nitrogen content appeared rebounded. The available P contents of no- phosphorus treatments decreased over time while those of the treatments with P fertilizers increased at first, then decreased, and after that kept relatively stable. The available K contents of no K treatments decreased slowly. The treatments of PK and NK had higher available K content than NPK treatment. [Conclusion] Thus, it is an effective fertilization measure to improve the wheat yield by supplying reasonable phosphate fertilizer and nitrogen fertilizer and making up potassium fertilizer.
基金Supported by the National Natural Science Foundation of China(41205126)the Discipline Construction and Macroscopic Agricultural Research Project of Anhui Academy of Agricultural Sciences(13A1424)+2 种基金the Fund for Youth Innovation of Anhui Academy of Agricultural Sciences(14B1460)the Innovative Research Team for Agricultural Disaster Risk Analysis in Anhui ProvinceAnhui Academy of Agricultural Sciences(14C1409)~~
文摘The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model. With Shou County and Huaiyuan County of Anhui Province as the experimental fields of winter wheat producing areas, the linear winter wheat yield estimating models were established by adopting backscattering coefficient and Normalized Difference Vegetation Index(NDVI) based on images from the synthetic aperture radar(SAR)—RDARSAT-2 and HJ satellite photographed in mid-April and early May, 2014, and then comparisons were conducted on the accuracy of the yield estimating models. The accuracies of the yield estimating models established using co-polarized(HH) and cross-polarized(HV) modes of SAR in Jiangou Town, Shou County were 68.37% and 74.01%, respectively, while the accuracies in Longkang Town, Huaiyuan County were 63.10%and 69.10%, respectively. Accuracies of yield estimating models established by HJ satellite data were 69.52% and 66.43% in Shou County and Huaiyuan County, respectively. Accuracies of winter yield estimating model based on HJ satellite data and that based on SAR were closed, and the yield difference of winter wheat in the lodging region was analyzed in detail. The model results laid the foundation and accumulated experience for the verification, parameters correction and promotion of the winter wheat yield estimating model.
基金Project supported by the Agricultural Development Program of the Chinese Academy of Sciences (No. KSCX1-YWN1504)the West Light Foundation of the Chinese Academy of Sciences (No. 2005404)the National Natural Science Foundation of China (Nos. 50479065 and 40601041).
文摘To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fertilizers on wheat grain yield and yield stability on the Loess Plateau using regression and stability analysis. The experiment consisted of 17 fertilizer treatments, containing the combinations of different N and P levels, with three replications arranged in a randomized complete block design. Nitrogen fertilizer was applied as urea, and P was applied as calcium superphosphate. Fertilizer rates had a large effect on the response of wheat yield to fertilization. Phosphorus, combined with N, increased yield significantly (P 〈 0.01). In the unfertilized control and the N or P sole application treatments, wheat yield had a declining trend although it was not statistically significant. Stability analysis combined with the trend analysis indicated that integrated use of fertilizer N and P was better than their sole application in increasing and sustaining the productivity of rainfed winter wheat.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390084 and 30270772)the Natural Science Foundation of Beijing (No. 6010001)
文摘Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-413-3) the Field Station Foundation of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Nos. 50479065 and 90102012)
文摘Long-term fertility experiments have become an important tool for investigating the sustainability of cropping systems. Therefore, a long-term (18-year) fertilization experiment was conducted in Changwu County, Shaanxi Province, China, to ascertain the effect of the long-term application of chemical fertilizers and manure on wheat yield and soil fertility in the Loess Plateau, so as to provide a scientific basis for sustainable land management. The experiment consisted of nine fertilizer treatments with thr…
基金supported by Feng Yun Research Plan (FYAPP-2021.0301)National Key Research and Development Program of China (2019YFC1510205)National Natural Science Foundation of China (42075193)。
文摘Accurate estimation of regional-scale crop yield under drought conditions allows farmers and agricultural agencies to make well-informed decisions and guide agronomic management. However, few studies have focused on using the crop model data assimilation(CMDA) method for regional-scale winter wheat yield estimation under drought stress and partial-irrigation conditions. In this study, we developed a CMDA framework to integrate remotely sensed water stress factor(MOD16 ET PET) with the WOFOST model using an ensemble Kalman filter(En KF) for winter wheat yield estimation at the regional scale in the North China Plain(NCP) during 2008–2018. According to our results, integration of MOD16 ET PETwith the WOFOST model produced more accurate estimates of regional winter wheat yield than open-loop simulation. The correlation coefficient of simulated yield with statistical yield increased for each year and error decreased in most years, with r ranging from 0.28 to 0.65 and RMSE ranging from 700.08 to1966.12 kg ha. Yield estimation using the CMDA method was more suitable in drought years(r = 0.47, RMSE = 919.04 kg ha) than in normal years(r = 0.30, RMSE = 1215.51 kg ha). Our approach performed better in yield estimation under drought conditions than the conventional empirical correlation method using vegetation condition index(VCI). This research highlighted the potential of assimilating remotely sensed water stress factor, which can account for irrigation benefit, into crop model for improving the accuracy of winter wheat yield estimation at the regional scale especially under drought conditions, and this approach can be easily adapted to other regions and crops.
文摘Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrilfuvents) in D. I. Khan, Pakistan, to explore the impact of six tillage methods (zero tillage straw retained (ZTsr), ZT straw burnt (ZTsb), reduced tillage straw incorporated (RTsi, including tiller and rotavator), RT straw burnt (RTsb), conventional tillage straw incorporated (CTsi, including disc plow, tiller, rotavator, and leveling operations), CT straw burnt (CTsb)) and ifve nitrogen rates, i.e., 0, 100, 150, 200, and 250 kg ha-1 on wheat yield. Mean values for N revealed that spikes m-2, grains/spike, 1 000-grain weight (g), and grain yield (kg ha-1) were signiifcantly higher at 200 kg N ha-1 in both the years as well as mean over years than all other treatments. Mean values for tillage revealed that ZTsr produced highest number of spikes m-2 among tillage methods. However, grains/spike, 1 000-grain weight, and grain yield were higher in tillage methods with either straw retained/incorporated than tillage methods with straw burnt. Interaction effects were signiifcant in year 1 and in mean over years regarding spikes m-2, 1 000-grain weight, total soil organic matter (SOM), and total soil N (TSN). ZTsr produced the most spikes m-2 and 1 000-grain weight at 200 kg N ha-1. ZTsr also produced higher SOM and TSN at 200-250 kg N ha-1 at the end of 2 yr cropping. Thus ZTsr with 200 kg N ha-1 may be an optimum and sustainable approach to enhance wheat yield and soil quality in rice-wheat system.
基金supported by the National Natural Science Foundation of China (41401491,41371396,41301457,41471364)the Introduction of International Advanced Agricultural Science and Technology,Ministry of Agriculture,China (948 Program,2016-X38)+1 种基金the Agricultural Scientific Research Fund of Outstanding Talentsthe Open Fund for the Key Laboratory of Agri-informatics,Ministry of Agriculture,China (2013009)
文摘To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) values. The performances of the calibrated crop environment resource synthesis for wheat (CERES-Wheat) model for two different assimilation scenarios were compared by employing ensemble Kalman filter (EnKF)-based strategies. The uncertainty factors of the crop model data assimilation was analyzed by considering the observation errors, assimilation stages and temporal-spatial scales. Overalll the results indicated a better yield estimate performance when the EnKF-based strategy was used to comprehen- sively consider several factors in the initial conditions and observations. When using this strategy, an adjusted coefficients of determination (R2) of 0.84, a root mean square error (RMSE) of 323 kg ha-1, and a relative errors (RE) of 4.15% were obtained at the field plot scale and an R2 of 0.81, an RMSE of 362 kg ha-1, and an RE of 4.52% were obtained at the pixel scale of 30 mx30 m. With increasing observation errors, the accuracy of the yield estimates obviously decreased, but an acceptable estimate was observed when the observation errors were within 20%. Winter wheat yield estimates could be improved significantly by assimilating observations from the middle to the end of the crop growing seasons. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. It is important to consider reasonable temporal-spatial scales and assimilation stages to obtain tradeoffs between accuracy and computation time, especially in operational systems used for regional crop yield estimates.
基金funded by the earmarked fund for China Agriculture Research System(CARS-03-19)the National Natural Science Foundation of China(51879267 and 51709264)+1 种基金the Open Fund Projects of the Agricultural Environment Experimental Station of Minstry of Agriculture and Rural Affairs,China(FIRI2021040103)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences。
文摘Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).Drip fertigation is considered to be an effective method for improving N use efficiency and reducing losses,while the performance of drip fertigation in winter wheat is limited by poor N scheduling.A two-year field experiment was conducted to evaluate the growth,development and yield of drip-fertigated winter wheat under different split urea (46%N,240 kg ha^(-1)) applications.The six treatments consisted of five fertigation N application scheduling programs and one slow-release fertilizer (SRF) application.The five N scheduling treatments were N0–100 (0%at sowing and 100%at jointing/booting),N25–75 (25%at sowing and 75%at jointing and booting),N50–50(50%at sowing and 50%at jointing/booting),N75–25 (75%at sowing and 25 at jointing/booting),and N100–0 (100%at sowing and 0%at jointing/booting).The SRF (43%N,240 kg ha^(-1)) was only used as fertilizer at sowing.Split N application significantly (P<0.05) affected wheat grain yield,yield components,aboveground biomass (ABM),water use efficiency(WUE) and nitrogen partial factor productivity (NPFP).The N50–50 and SRF treatments respectively had the highest yield(8.84 and 8.85 t ha^(-1)),ABM (20.67 and 20.83 t ha^(-1)),WUE (2.28 and 2.17 kg m^(-3)) and NPFP (36.82 and 36.88 kg kg^(-1)).This work provided substantial evidence that urea-N applied in equal splits between basal and topdressing doses compete economically with the highly expensive SRF for fertilization of winter wheat crops.Although the single-dose SRF could reduce labor costs involved with the traditional method of manual spreading,the drip fertigation system used in this study with the N50–50 treatment provides an option for farmers to maintain wheat production in the NCP.
基金supported by the National Natural Science Foundation of China (31401297)the National Key Research and Development Program of China (2016YFD0300105)+1 种基金the Chinese Universities Scientific Fund (2016NX002)the Earmarked Fund for Modern Agro-Industry Technology Research System, China (CARS-3)
文摘To understand the contribution of ear photosynthesis to grain yield and its response to water supply in the improvement of winter wheat, 15 cultivars released from 1980 to 2012 in North China Plain(NCP) were planted under rainfed and irrigated conditions from 2011 to 2013, and the ear photosynthesis was tested by ear shading. During the past 30 years, grain yield significantly increased, the flag leaf area slightly increased under irrigated condition but decreased significantly under rainfed condition, the ratio of grain weight:leaf area significantly increased, and the contribution of ear photosynthesis to grain yield changed from 33.6 to 64.5% and from 32.2 to 57.2% under rainfed and irrigated conditions, respectively. Grain yield, yield components, and ratio of grain weight:leaf area were positively related with contribution of ear photosynthesis. The increase in grain yield in winter wheat was related with improvement in ear photosynthesis contribution in NCP, especially under rainfed condition.
基金supported by the National Natural Science Foundation of China(42101382 and 41901342)the Shandong Provincial Natural Science Foundation(ZR2020QD016)the National Key Research and Development Program of China(2016YFD0300101).
文摘Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security.
文摘Conservational tillage (CT) in combination with broad spectrum herbicide may be more efficient and economical in controlling weeds, reducing cost of cultivation, and enhancing wheat yield. Field experiments were carried out to evaluate the effect of tillage and herbicides on weeds and wheat yield under rice-wheat cropping system (RWCS). The results indicated that broad spectrum herbicides particularly, carfentrazone ethyl ester+ isoproturon (Affinity 50 WDG) reduced weeds density by 93 and 95% compared to control and also produced the maximum grain yield (6 818 and 6 996 kg ha-l) and HI (harvest index, 44.7 and 44.6%) in 2007-2008 and 2008-2009 growing seasons, respectively. The maximum weeds infestation and the lowest yield were recorded in control. Tillage methods significantly influenced grain yield and HI, while no significant effect on all other parameters. The overall mean yield was significantly higher in zero tillage (5 575 kg ha-l) and reduced tillage (5 584 kg ha-l) compared to CT (5 479 kg ha-^-1). Besides increasing wheat yield, Affinity 50 WDG and zero tillage are important weed management practices that can be integrated into wheat production in RWCS. However, in case of perennial weeds or insect pests' infestation, CT in combination with Affinity 50 WDG would be more productive than conservation tillage.
文摘A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Results of the experiment showed that the correlation between wheat yield and water consumption was not significant, but that between wheat yield and the ratio of water supply to Penman evaporation was significant, following a parabolic curve. The water consumption process,as well as the growing season of wheat plant, could be divided into three periods. The first (154 days) was vegetative growth period, during which the water consumption accounted for 35% of the total; the second (65 days) reproductive growth period, during which the water consumption occupied 57%, indicating the importance of water consumption in this period; and the third (5~9 days) maturation period, during which water supply was not important to yield formation. According to the statistics of meteorological data over the years in this region, the hydrological conditions of the five seasons covered a probability range of 74.8%.The results (3.46~5.63 t ha-1) indicated that the productivity of the wheat field under rainfed conditions in this region had a degree of confidence of 74.8%.
基金supported by the National Key Research and Development Program of China (2016YFD0300808)the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD05B02)+2 种基金the National Natural Science Foundation of China (31571612 and 31100191)the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STSZDTP-001)the Hebei Key Research and Development Program, China (15226407D and 17227006D)
文摘With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha-(-1); N2, 200 kg N ha-(-1); N3, 300 kg N ha-(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha-(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.
基金This study was funded by the National Key Research and Development Program of China(2021YFD1700900).
文摘Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.