The effect of lead, cadmium and zinc on the transcriptions and structures of 5 DNA fragments was studied by RNA slot blot hybridization and the analysis of restriction fragment length polymorphism (RFLP). The seeds of...The effect of lead, cadmium and zinc on the transcriptions and structures of 5 DNA fragments was studied by RNA slot blot hybridization and the analysis of restriction fragment length polymorphism (RFLP). The seeds of three wheat strains (Yunmai29, 1257, 5118) which had grown in contaminated area, Huize Lead Zinc Mine, Yunnan Province of China and in uncontaminated area were taken as the experimental materials. No obvious change of DNA structure was detected, but there were many differences in the DNA transcription levels. These results implied that lead, cadmium and zinc might inhibit DNA transcription and had much more effect on gene expression than structure in wheat, which might acclimate to metal pollution after having grown in pollution area for a long time and the interference of these metal ions in gene expression might be one of main mechanisms of metal toxicity and plant adaptation. The results also showed the microevolution of wheat in the lead zinc mine.展开更多
Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),f...Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),field experiments were conducted in Gaocheng County of Hebei Province,China.Four winter wheat cultivars,i.e.,Shimai 14,Jifeng 703,Shimai 12,and Shixin 828,and four cultivars,i.e.,Temai 1,Shimai 12,Shixin 531,and Shixin 828,were used in the experiment,during 2004-2005 and 2005-2006,respectively.Plant samples were taken from the plots at each growing stage for Zn concentration analysis.The main results showed that the concentration of Zn in various above-ground organs of wheat was 9.5-112.5 mg kg-1 at different growing stages.The organ with the highest Zn concentration differed with the change of growth center at different growing stages.Accumulation of Zn in leaf blades was the highest among all the organs during early growing period,and more than 50% of the Zn accumulation was distributed to leaf blades before jointing,and higher than that to other organs.In late growing period,however,the accumulation of Zn in grains was the highest,and 58.1% of the Zn accumulation was distributed in grains at maturity.The total accumulation of Zn in wheat plant during its life span ranged from 384.9 to 475.9 g ha-1.The amount of Zn required for the formation of 100 kg grain yield ranged from 4.3 to 5.2 g.All the organs were ordered in such a sequence that leaf blades 〉 spikes 〉 leaf sheaths 〉 stems according to their net absorption and transportation of Zn as well as their contribution to Zn accumulation in grains.58.2-60.3% of the Zn accumulated in grains was redistributed from other organs,mostly from leaf blades.Concentration and accumulation of Zn in all the organs of wheat was high during early and middle growing periods,while accumulation of Zn in grains during late growing period mainly depended on the redistribution from other organs.According to these characteristics of Zn absorption and accumulation,Zn should be applied as seed dressing or basal fertilizer,so as to accelerate the early growth and Zn absorption of wheat.展开更多
Zinc finger protein(ZFP) genes comprise a large and diverse gene family, and are involved in biotic and abiotic stress responses in plants. In this study, a total of 126 ZFP genes classified into various types in wh...Zinc finger protein(ZFP) genes comprise a large and diverse gene family, and are involved in biotic and abiotic stress responses in plants. In this study, a total of 126 ZFP genes classified into various types in wheat were characterized and subjected to expression pattern analysis under inorganic phosphate(Pi) deprivation. The wheat ZFP genes and their corresponding GenBank numbers were obtained from the information of a 4×44K wheat gene expression microarray chip. They were confirmed by sequence similarity analysis and named based on their homologs in Brachypodium distachyon or Oriza sativa. Expression analysis based on the microarray chip revealed that these ZFP genes are categorized into 11 classes according to their gene expression patterns in a 24-h of Pi deprivation regime. Among them, ten genes were differentially up-regulated, ten genes differentially downregulated, and two genes both differentially up- and down-regulated by Pi deprivation. The differentially up- or down-regulated genes exhibited significantly more or less transcripts at one, two, or all of the checking time points(1, 6, and 24 h) of Pi stress in comparison with those of normal growth, respectively. The both differentially up- and down-regulated genes exhibited contrasting expression patterns, of these, TaWRKY70;5 showed significantly up-regulated at 1 and 6 h and down-regulated at 24 h whereas TaAN1AN20-8;2 displayed significantly upregulated at 1 h and downregulated at 6 h under deprivation Pi condition. Real time PCR analysis confirmed the expression patterns of the differentially expressed genes obtained by the microarray chip. Our results indicate that numerous ZFP genes in wheat respond to Pi deprivation and have provided further insight into the molecular basis that plants respond to Pi deprivation mediated by the ZFP gene family.展开更多
The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this s...The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows:maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ;MS, MSZ, WS, WSZ;MC, MCZ, WC, WCZ, respectively);straw with zinc only (MZ, WZ);straw with untreated soil (MS, WS);and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80%of the ifeld capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were signiifcantly different (P〈0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations.展开更多
To evaluate the impact of different zinc application methods on yield and yield components of various wheat cultivars, a field experiment was carried out at Student’s Farm, Department of Agronomy, University of Agric...To evaluate the impact of different zinc application methods on yield and yield components of various wheat cultivars, a field experiment was carried out at Student’s Farm, Department of Agronomy, University of Agriculture Faisalabad, during winter 2014-2015. The experiment was laid out in RCBD (Randomized Complete Block Design) with factorial arrangement. In this experiment, all the treatments were replicated three times, using the net plot size of 1.8 m × 5.0 m. The experiment comprised of two factors. Factor A consists of two varieties: Faisalabad-2008 and Punjab-2011. While, Factor B consists of different methods of zinc application, control, zinc application in soil before planting 23 kg·ha-1, zinc foliar application, 4% ZnSO4 solution at two stages (tillering and stem elongation stage). The data regarding different parameters were collected and analyzed from the crop using standard procedures. Regarding the impact of zinc application method maximum plant height at maturity (103.6 cm), total number of tillers (564.67 m-2), spike length (10.83 cm), number of spikelets spike-1 (19.50), number of grains spike-1 (50.36), 1000-grain weight (34.16 g), biological yield (11.93 t·ha-1), grain yield (6.00 t·ha-1) and harvest index (39.25%) were recorded in treatment where zinc was applied both in the soil before planting and by foliar application on later growth stages. Similarly, grain zinc contents (33.11 mg·kg-1), grain protein contents (10.1%) and grain carbohydrate contents (64.23%) were also observed in the treatment where zinc was applied both in the soil before planting and by foliar application on later growth stages, which is better than all other treatments. In case of wheat varieties, Faisalabad-2008 performed better than Punjab-2011, with maximum method maximum total number of tillers (460.67 m-2), spike length (9.70 cm), number of grains spike-1 (48.80), 1000-grain weight (33.81 g), biological yield (10.32 t·ha-1), grain yield (5.0 t·ha-1) and harvest index (33.93%). It is concluded that sowing of wheat cultivar Faisalabad-2008 + application of zinc in soil before planting with foliar application at later stages (tillering and stem elongation stage) of wheat could give better results in terms of yield.展开更多
Nanoscience is a development concept in the field of agriculture. Water scarcity is one of the most serious stresses that restrict growth of plant. This search was done to value the positive and negative influence of ...Nanoscience is a development concept in the field of agriculture. Water scarcity is one of the most serious stresses that restrict growth of plant. This search was done to value the positive and negative influence of ZnO nanoparticles on wheat plant growth under drought stress. A green synthesis technique was used to produce pollutant-free nano structures. A field experiment was carried out during successive season (2019/2020). NP-Zn-O was applied either by seed-soaking, foliar spraying, or both together applications. The dose of ZnO NPs was 100 mg/l. Data showed that drought stress reduced the grain and shoot wheat yield. The use of different forms of ZnO improved the grain and shoot wheat yield, these increases reached 1.16-, 1.54-fold that control. In addition, one of the other effects of Zn-O-NPs is to increase the levels of chlorophyll and proline antioxidants in plant tissues, as it is a cofactor for enzymes such as superoxide dismutase and catalase. The data suggest that the role of ZnO NPs is not only to improve plant growth and physiological parameters, but also to improve nutrient uptake and plant nutrient levels. In this regard, the use of zinc in the form of ZnO NPs has a positive effect on reducing the adverse effects of drought conditions and improving the nutritional quality of plants.展开更多
Pearling is an effective method for evaluating the distribution of chemical components in wheat grain. Five pearling fractions (representing approximately 20% of the original sample weight) of wheat grain were obtai...Pearling is an effective method for evaluating the distribution of chemical components in wheat grain. Five pearling fractions (representing approximately 20% of the original sample weight) of wheat grain were obtained using the JNMJ3 rice polisher for two cultivars with different methods of Zinc (Zn) application; the residual portion (approximately 80%) was ground as flour. Results showed that folJar or soil+foliar Zn application methods effectively increased Zn concentrations and bioavailability in whole grain and pearling fractions, but soil Zn application was ineffective in field conditions. In addition, the concentrations of Zn, Fe, Mn and Cu within wheat grain showed a diminishing trend from the outer layer to the inner portions of the wheat grain as the pearling level increased. These results cleady showed the distribution of minerals in wheat grain, especially in the outer part of the grain (bran). The results also suggest that precise milling techniques combined with foliar Zn ap- plication could improve the Zn and Fe nutritional qualities of consumed flour and mitigate human Zn and Fe deficiencies.展开更多
文摘The effect of lead, cadmium and zinc on the transcriptions and structures of 5 DNA fragments was studied by RNA slot blot hybridization and the analysis of restriction fragment length polymorphism (RFLP). The seeds of three wheat strains (Yunmai29, 1257, 5118) which had grown in contaminated area, Huize Lead Zinc Mine, Yunnan Province of China and in uncontaminated area were taken as the experimental materials. No obvious change of DNA structure was detected, but there were many differences in the DNA transcription levels. These results implied that lead, cadmium and zinc might inhibit DNA transcription and had much more effect on gene expression than structure in wheat, which might acclimate to metal pollution after having grown in pollution area for a long time and the interference of these metal ions in gene expression might be one of main mechanisms of metal toxicity and plant adaptation. The results also showed the microevolution of wheat in the lead zinc mine.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD02A08)the Earmarked Fund for Modern Agro-Industry Technology Research System,China
文摘Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),field experiments were conducted in Gaocheng County of Hebei Province,China.Four winter wheat cultivars,i.e.,Shimai 14,Jifeng 703,Shimai 12,and Shixin 828,and four cultivars,i.e.,Temai 1,Shimai 12,Shixin 531,and Shixin 828,were used in the experiment,during 2004-2005 and 2005-2006,respectively.Plant samples were taken from the plots at each growing stage for Zn concentration analysis.The main results showed that the concentration of Zn in various above-ground organs of wheat was 9.5-112.5 mg kg-1 at different growing stages.The organ with the highest Zn concentration differed with the change of growth center at different growing stages.Accumulation of Zn in leaf blades was the highest among all the organs during early growing period,and more than 50% of the Zn accumulation was distributed to leaf blades before jointing,and higher than that to other organs.In late growing period,however,the accumulation of Zn in grains was the highest,and 58.1% of the Zn accumulation was distributed in grains at maturity.The total accumulation of Zn in wheat plant during its life span ranged from 384.9 to 475.9 g ha-1.The amount of Zn required for the formation of 100 kg grain yield ranged from 4.3 to 5.2 g.All the organs were ordered in such a sequence that leaf blades 〉 spikes 〉 leaf sheaths 〉 stems according to their net absorption and transportation of Zn as well as their contribution to Zn accumulation in grains.58.2-60.3% of the Zn accumulated in grains was redistributed from other organs,mostly from leaf blades.Concentration and accumulation of Zn in all the organs of wheat was high during early and middle growing periods,while accumulation of Zn in grains during late growing period mainly depended on the redistribution from other organs.According to these characteristics of Zn absorption and accumulation,Zn should be applied as seed dressing or basal fertilizer,so as to accelerate the early growth and Zn absorption of wheat.
基金supported by the National Natural Science Foundation of China (31201674 and 31371618)the Natural Science Foundation of Hebei Province, China (C2011204031)the Key Laboratory of Crop Growth Regulation of Hebei Province, China
文摘Zinc finger protein(ZFP) genes comprise a large and diverse gene family, and are involved in biotic and abiotic stress responses in plants. In this study, a total of 126 ZFP genes classified into various types in wheat were characterized and subjected to expression pattern analysis under inorganic phosphate(Pi) deprivation. The wheat ZFP genes and their corresponding GenBank numbers were obtained from the information of a 4×44K wheat gene expression microarray chip. They were confirmed by sequence similarity analysis and named based on their homologs in Brachypodium distachyon or Oriza sativa. Expression analysis based on the microarray chip revealed that these ZFP genes are categorized into 11 classes according to their gene expression patterns in a 24-h of Pi deprivation regime. Among them, ten genes were differentially up-regulated, ten genes differentially downregulated, and two genes both differentially up- and down-regulated by Pi deprivation. The differentially up- or down-regulated genes exhibited significantly more or less transcripts at one, two, or all of the checking time points(1, 6, and 24 h) of Pi stress in comparison with those of normal growth, respectively. The both differentially up- and down-regulated genes exhibited contrasting expression patterns, of these, TaWRKY70;5 showed significantly up-regulated at 1 and 6 h and down-regulated at 24 h whereas TaAN1AN20-8;2 displayed significantly upregulated at 1 h and downregulated at 6 h under deprivation Pi condition. Real time PCR analysis confirmed the expression patterns of the differentially expressed genes obtained by the microarray chip. Our results indicate that numerous ZFP genes in wheat respond to Pi deprivation and have provided further insight into the molecular basis that plants respond to Pi deprivation mediated by the ZFP gene family.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD14B11)the National Natural Science Foundation of China (41371288, 31071863)the Fundamental Research Funds for Northwest A&F University, China (QN2011074)
文摘The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows:maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ;MS, MSZ, WS, WSZ;MC, MCZ, WC, WCZ, respectively);straw with zinc only (MZ, WZ);straw with untreated soil (MS, WS);and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80%of the ifeld capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were signiifcantly different (P〈0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations.
文摘To evaluate the impact of different zinc application methods on yield and yield components of various wheat cultivars, a field experiment was carried out at Student’s Farm, Department of Agronomy, University of Agriculture Faisalabad, during winter 2014-2015. The experiment was laid out in RCBD (Randomized Complete Block Design) with factorial arrangement. In this experiment, all the treatments were replicated three times, using the net plot size of 1.8 m × 5.0 m. The experiment comprised of two factors. Factor A consists of two varieties: Faisalabad-2008 and Punjab-2011. While, Factor B consists of different methods of zinc application, control, zinc application in soil before planting 23 kg·ha-1, zinc foliar application, 4% ZnSO4 solution at two stages (tillering and stem elongation stage). The data regarding different parameters were collected and analyzed from the crop using standard procedures. Regarding the impact of zinc application method maximum plant height at maturity (103.6 cm), total number of tillers (564.67 m-2), spike length (10.83 cm), number of spikelets spike-1 (19.50), number of grains spike-1 (50.36), 1000-grain weight (34.16 g), biological yield (11.93 t·ha-1), grain yield (6.00 t·ha-1) and harvest index (39.25%) were recorded in treatment where zinc was applied both in the soil before planting and by foliar application on later growth stages. Similarly, grain zinc contents (33.11 mg·kg-1), grain protein contents (10.1%) and grain carbohydrate contents (64.23%) were also observed in the treatment where zinc was applied both in the soil before planting and by foliar application on later growth stages, which is better than all other treatments. In case of wheat varieties, Faisalabad-2008 performed better than Punjab-2011, with maximum method maximum total number of tillers (460.67 m-2), spike length (9.70 cm), number of grains spike-1 (48.80), 1000-grain weight (33.81 g), biological yield (10.32 t·ha-1), grain yield (5.0 t·ha-1) and harvest index (33.93%). It is concluded that sowing of wheat cultivar Faisalabad-2008 + application of zinc in soil before planting with foliar application at later stages (tillering and stem elongation stage) of wheat could give better results in terms of yield.
文摘Nanoscience is a development concept in the field of agriculture. Water scarcity is one of the most serious stresses that restrict growth of plant. This search was done to value the positive and negative influence of ZnO nanoparticles on wheat plant growth under drought stress. A green synthesis technique was used to produce pollutant-free nano structures. A field experiment was carried out during successive season (2019/2020). NP-Zn-O was applied either by seed-soaking, foliar spraying, or both together applications. The dose of ZnO NPs was 100 mg/l. Data showed that drought stress reduced the grain and shoot wheat yield. The use of different forms of ZnO improved the grain and shoot wheat yield, these increases reached 1.16-, 1.54-fold that control. In addition, one of the other effects of Zn-O-NPs is to increase the levels of chlorophyll and proline antioxidants in plant tissues, as it is a cofactor for enzymes such as superoxide dismutase and catalase. The data suggest that the role of ZnO NPs is not only to improve plant growth and physiological parameters, but also to improve nutrient uptake and plant nutrient levels. In this regard, the use of zinc in the form of ZnO NPs has a positive effect on reducing the adverse effects of drought conditions and improving the nutritional quality of plants.
基金supported by the National Natural Science Foundation of China (41371288 and 31672233)the National Key Technologies R&D Programs of China during the 12th Five-Year Plan period (2012BAD14B11)
文摘Pearling is an effective method for evaluating the distribution of chemical components in wheat grain. Five pearling fractions (representing approximately 20% of the original sample weight) of wheat grain were obtained using the JNMJ3 rice polisher for two cultivars with different methods of Zinc (Zn) application; the residual portion (approximately 80%) was ground as flour. Results showed that folJar or soil+foliar Zn application methods effectively increased Zn concentrations and bioavailability in whole grain and pearling fractions, but soil Zn application was ineffective in field conditions. In addition, the concentrations of Zn, Fe, Mn and Cu within wheat grain showed a diminishing trend from the outer layer to the inner portions of the wheat grain as the pearling level increased. These results cleady showed the distribution of minerals in wheat grain, especially in the outer part of the grain (bran). The results also suggest that precise milling techniques combined with foliar Zn ap- plication could improve the Zn and Fe nutritional qualities of consumed flour and mitigate human Zn and Fe deficiencies.