To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hyb...To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.展开更多
Differential expression of gene in iron-efficient wheat cultivar Jing411 and iron-inefficient cul-tivar SanshumaiS under iron-deficiency and iron-sufficiency conditions was revealed by differential display reverse tra...Differential expression of gene in iron-efficient wheat cultivar Jing411 and iron-inefficient cul-tivar SanshumaiS under iron-deficiency and iron-sufficiency conditions was revealed by differential display reverse transcript PCR (DDRT-PCR) method. Northern blotting was carried out using ATP-binding transporter (ABC) cDNA obtained from DDRT-PCR products of the cultivar Jing411 as probe. Our results suggested that ABC gene expression was suppressed under iron-deficiency condition.展开更多
Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese b...Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar(Jimai 20) during grain development using the Gene Chip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis(DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and Map Man analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by q RT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.展开更多
Photoperiodic response is an important characteristic that plays an important role in plant adaptability for various environments. Wheat cultivars grow widely and have high yield potential for the strong photoperiod a...Photoperiodic response is an important characteristic that plays an important role in plant adaptability for various environments. Wheat cultivars grow widely and have high yield potential for the strong photoperiod adaptibility. To assess the photoperiodic response of different genotypes in wheat cultivars, the photoperiodic effects of the Ppd-D1 alleles and the expressions of the related TaGI, TaCO and Ta FT genes in Liaochun 10 and Ningchun 36 were investigated under the short-day(6 h light, SD), moderate-day(12 h light, MD) and long-day(24 h light, LD) conditions. Amplicon length comparison indicated that the promoter of Ppd-D1 in Ningchun 36 is intact, while Liaochun 10 presented the partial sequence deletion of Ppd-D1 promoter. The durations of all developmental stages of the two cultivars were reduced by subjection to an extended photoperiod, except for the stamen and pistil differentiation stage in the Liaochun 10 cultivar. The expression levels of the Ppd-D1 alleles and the TaGI, TaCO and TaFT genes associated with the photoperiod pathway were examined over a 24-h period under SD and MD conditions. The relationships of different photoperiodic responses of the two cultivars and the expression of photoperiod pathway genes were analyzed accordingly. The photoperiod insensitive(PI) genotype plants flower early under SD; meanwhile, the abnormal expression of the Ppd-D1 a allele is accompanied with an increase in Ta FT1 expression and the TaCO expression variation. The results would facilitate molecular breeding in wheat.展开更多
Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, tra...Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, transcriptome data from droughttreated samples and controls were compared. Drought slightly reduced the anthocyanin, protein and starch contents of GZ1 grains and significantly reduced the grain weight. Under drought stress, 16 682 transcripts were reduced, 27 766 differentially expressed genes(DEGs) were identified, and 379 DEGs, including DREBs, were related to defense response. The defense-response genes included response to water deprivation, reactive oxygen, bacteria, fungi, etc. Most of the structural and regulatory genes in anthocyanin biosynthesis were downregulated, with only Ta DFR, Ta OMT, Ta5,3GT, and Ta MYB-4 B1 being upregulated. Ta CHS, Ta F3H, TaCHI, Ta4CL, and TaF3’H are involved in responses to UV, hormones, and stimulus. Ta CHS-2D1, Ta DFR-2D2, Ta DFR-7D, TaOMT-5A, Ta5,3 GT-1B1, Ta5,3GT-3A, and Ta5,3GT-7B1 connect anthocyanin biosynthesis with other pathways, and their interacting proteins are involved in primary metabolism, genetic regulation, growth and development, and defense responses. There is further speculation about the defense-responsive network in purple wheat. The results indicated that biotic and abiotic stress-responsive genes were stimulated to resist drought stress in purple wheat GZ1, and anthocyanin biosynthesis also participated in the drought defense response through several structural genes.展开更多
Powdery mildew of wheat is a destructive disease seriously threatening yield and quality worldwide.Comprehensive dissection of new resistance-related loci/genes is necessary to control this disease.LS5082 is a Chinese...Powdery mildew of wheat is a destructive disease seriously threatening yield and quality worldwide.Comprehensive dissection of new resistance-related loci/genes is necessary to control this disease.LS5082 is a Chinese wheat breeding line with resistance to powdery mildew.Genetic analysis,using the populations of LS5082 and three susceptible parents(Shannong 29,Shimai 22 and Huixianhong),indicated that a single dominant gene,tentatively designated PmLS5082,conferred seedling resistance to different Blumeria graminis f.sp.tritici(Bgt)isolates.Bulked segregant RNA-Seq was carried out to map PmLS5082 and to profile differentially expressed genes associated with PmLS5082.PmLS5082 was mapped to a 0.7 cM genetic interval on chromosome arm 2BL,which was aligned to a 0.7 Mb physical interval of 710.3–711.0 Mb.PmLS5082 differs from the known powdery mildew(Pm)resistance genes on chromosome arm 2BL based on their origin,chromosome positions and/or resistance spectrum,suggesting PmLS5082 is most likely a new Pm gene/allele.Through clusters of orthologous groups and kyoto encyclopedia of genes and genomes analyses,differentially expressed genes(DEGs)associated with PmLS5082 were profiled.Six DEGs in the PmLS5082 interval were confirmed to be associated with PmLS5082 via qPCR analysis,using an additional set of wheat samples and time-course analysis postinoculation with Bgt isolate E09.Ten closely linked markers,including two kompetitive allele-specific PCR markers,were confirmed to be suitable for marker-assisted selection of PmLS5082 in different genetic backgrounds,thus can be used to detect PmLS5082 and pyramid it with other genes in breeding programs.展开更多
: To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) near-isogenic lines (NILs) co...: To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) near-isogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2+ transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways. The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.展开更多
The mRNA differential display (DDRT-PCR) technique was adopted to find out the genes related tosettlement metamorphosis development process of Ruditapes philippinarum larvae.In this study,we haveobtained three hundred...The mRNA differential display (DDRT-PCR) technique was adopted to find out the genes related tosettlement metamorphosis development process of Ruditapes philippinarum larvae.In this study,we haveobtained three hundred and forty-six amplification bands in total from pediveliger larvae,veliger larvae,eye spot larvae and post-larvae.Sixty-five out of three hundred and forty-six bands are distinctly differen-tial display from band pattern,which can be put into four groups,standing for different expression char-acters.Sixteen differential display bands were cloned,sequenced and analyzed and nine different se-quences are obtained in the study.Three sequences have higher similarity to the cDNAs deposited indatabase and three are very similar to the rDNA of other species,considered as the rDNA of Ruditapesphilippinarum.The rest three sequences are found to be novel sequences after analyzed.Their accessionnumbers are AY916799,AY916798,and AY916797 respectively.We thought the novel sequences arepossibly relevant to the early embryo development of Ruditapes philippinarum larvae and can provide somefundamental understandings that are helpful for the improvement of scallop seed raising industry.展开更多
Objective: To screen and analyze key express sequence tags (ESTs) which were differentially displayed in every period of SD rats' primary hepatic carcinoma and reveal the molecular mechanism of carcinogenesis. Met...Objective: To screen and analyze key express sequence tags (ESTs) which were differentially displayed in every period of SD rats' primary hepatic carcinoma and reveal the molecular mechanism of carcinogenesis. Methods: Using diethylnitrosamine (DENA) as a cancerigenic agent, animal models with different phases of primary hepatic cancer were constructed in SD rats. Rats were respectively sacrificed at d 14, d 28, d 56, d 77, d 105 and d 112 after the rats received DENA by gavage, then the livers were harvested. One part of the livers was classified according to their pathological changes, while the other was reserved for molecular mechanism studies on hepatocarcinogenesis. The differentially expressed genes were isolated from both normal and morbid tissues by mRNA differential display technique (DDRT-PCR). After the fragments were sequenced, bioinformatics were .used to analyze the results. Results: Twelve differentially expressed cDNA fragments were obtained. Nine fragments had the homology with known cDNA clones, especially EST-7 was similar to BN/SsNHsdMCW mitochondrion gene and the identity was 100% which suggested EST-7 may be the part of BN/SsNHsdMCW mitochondrion gene. In contrast, other three fragments (EST-1, EST-3 and EST-5) had extremely low identity to any genes registered in GENBANK databases. Conclusions: BN/SsNHsdMCW mitochondrion gene was expressed in different periods of hepatocarcinogenesis. Moreover, EST-I, EST-3 and EST-5 were suggested to contribute to the development of rat hepatocarcinogenesis, and thus may be candidates of new targets of oncogenes or cancer suppressor genes.展开更多
Studying the regulatory mechanisms that drive nitrogen-use efficiency(NUE)in crops is important for sustainable agriculture and environmental protection.In this study,we generated a high-quality genome assembly for th...Studying the regulatory mechanisms that drive nitrogen-use efficiency(NUE)in crops is important for sustainable agriculture and environmental protection.In this study,we generated a high-quality genome assembly for the high-NUE wheat cultivar Kenong 9204 and systematically analyzed genes related to nitrogen uptake and metabolism.By comparative analyses,we found that the high-affinity nitrate transporter gene family had expanded in Triticeae.Further studies showed that subsequent functional differentiation endowed the expanded family members with saline inducibility,providing a genetic basis for improving the adaptability of wheat to nitrogen deficiency in various habitats.To explore the genetic and molecular mechanisms of high NUE,we compared genomic and transcriptomic data from the high-NUE cultivar Kenong 9204(KN9204)and the low-NUE cultivar Jing 411 and quantified their nitrogen accumulation under high-and low-nitrogen conditions.Compared with Jing 411,KN9204 absorbed significantly more nitrogen at the reproductive stage after shooting and accumulated it in the shoots and seeds.Transcriptome data analysis revealed that nitrogen deficiency clearly suppressed the expression of genes related to cell division in the young spike of Jing 411,whereas this suppression of gene expression was much lower in KN9204.In addition,KN9204 maintained relatively high expression of NPF genes for a longer time than Jing 411 during seed maturity.Physiological and transcriptome data revealed that KN9204 was more tolerant of nitrogen deficiency than Jing 411,especially at the reproductive stage.The high NUE of KN9204 is an integrated effect controlled at different levels.Taken together,our data provide new insights into the molecular mechanisms of NUE and important gene resources for improving wheat cultivars with a higher NUE trait.展开更多
With the increase in consumer demand,wheat grain quality improvement has become a focus in China and worldwide.Transcriptome analysis is a powerful approach to research grain traits and elucidate their genetic regulat...With the increase in consumer demand,wheat grain quality improvement has become a focus in China and worldwide.Transcriptome analysis is a powerful approach to research grain traits and elucidate their genetic regulation.In this study,two cDNA libraries from the developing grain and leaf-stem components of bread wheat cultivar,Nongda211,were sequenced using Roche/454 technology.There were 1061274 and 1516564 clean reads generated from grain and leaf-stem,respectively.A total of 61393 high-quality unigenes were obtained with an average length of 1456 bp after de novo assembly.The analysis of the 61393 unigenes involved in the biological processes of the grain showed that there were 7355 differentially expressed genes upregulated in the grain library.Gene ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that many transcription products and transcription factors associated with carbohydrate and protein metabolism were abundantly expressed in the grain.These results contribute to excavate genes associated with wheat quality and further study how they interact.展开更多
文摘To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.
文摘Differential expression of gene in iron-efficient wheat cultivar Jing411 and iron-inefficient cul-tivar SanshumaiS under iron-deficiency and iron-sufficiency conditions was revealed by differential display reverse transcript PCR (DDRT-PCR) method. Northern blotting was carried out using ATP-binding transporter (ABC) cDNA obtained from DDRT-PCR products of the cultivar Jing411 as probe. Our results suggested that ABC gene expression was suppressed under iron-deficiency condition.
基金financially supported by grants from the National Natural Science Foundation of China(31471485)Natural Science Foundation of Beijing Citythe Key Developmental Project of Science and Technology from Beijing Municipal Commission of Education(KZ201410028031)
文摘Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar(Jimai 20) during grain development using the Gene Chip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis(DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and Map Man analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by q RT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD16B07,2013BAD04B01)the National Natural Science Foundation of China(31271726)
文摘Photoperiodic response is an important characteristic that plays an important role in plant adaptability for various environments. Wheat cultivars grow widely and have high yield potential for the strong photoperiod adaptibility. To assess the photoperiodic response of different genotypes in wheat cultivars, the photoperiodic effects of the Ppd-D1 alleles and the expressions of the related TaGI, TaCO and Ta FT genes in Liaochun 10 and Ningchun 36 were investigated under the short-day(6 h light, SD), moderate-day(12 h light, MD) and long-day(24 h light, LD) conditions. Amplicon length comparison indicated that the promoter of Ppd-D1 in Ningchun 36 is intact, while Liaochun 10 presented the partial sequence deletion of Ppd-D1 promoter. The durations of all developmental stages of the two cultivars were reduced by subjection to an extended photoperiod, except for the stamen and pistil differentiation stage in the Liaochun 10 cultivar. The expression levels of the Ppd-D1 alleles and the TaGI, TaCO and TaFT genes associated with the photoperiod pathway were examined over a 24-h period under SD and MD conditions. The relationships of different photoperiodic responses of the two cultivars and the expression of photoperiod pathway genes were analyzed accordingly. The photoperiod insensitive(PI) genotype plants flower early under SD; meanwhile, the abnormal expression of the Ppd-D1 a allele is accompanied with an increase in Ta FT1 expression and the TaCO expression variation. The results would facilitate molecular breeding in wheat.
基金supported by the grants from the National Key R&D Program of China (2017YFD0100901-4 and 2016YFC0502604)the National Natural Science Foundation of China (31660390)+5 种基金the Major Special Project of Science and Technology Program in Guizhou, China (2017-5411-06 and 2017-5788)the Construction Project of State Engineering Technology Institute for Karst Desertification Control, China (2012FU125X13)the Innovation Talents Team Construction of Science and Technology in Guizhou, China (2016-5624)the Major Research Project of Innovation Group in Guizhou, China (2016-023)the Graduate Innovation Fund of Guizhou University, China (2017025)the Science and Technology Project in Guizhou, China (2019-4246)
文摘Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, transcriptome data from droughttreated samples and controls were compared. Drought slightly reduced the anthocyanin, protein and starch contents of GZ1 grains and significantly reduced the grain weight. Under drought stress, 16 682 transcripts were reduced, 27 766 differentially expressed genes(DEGs) were identified, and 379 DEGs, including DREBs, were related to defense response. The defense-response genes included response to water deprivation, reactive oxygen, bacteria, fungi, etc. Most of the structural and regulatory genes in anthocyanin biosynthesis were downregulated, with only Ta DFR, Ta OMT, Ta5,3GT, and Ta MYB-4 B1 being upregulated. Ta CHS, Ta F3H, TaCHI, Ta4CL, and TaF3’H are involved in responses to UV, hormones, and stimulus. Ta CHS-2D1, Ta DFR-2D2, Ta DFR-7D, TaOMT-5A, Ta5,3 GT-1B1, Ta5,3GT-3A, and Ta5,3GT-7B1 connect anthocyanin biosynthesis with other pathways, and their interacting proteins are involved in primary metabolism, genetic regulation, growth and development, and defense responses. There is further speculation about the defense-responsive network in purple wheat. The results indicated that biotic and abiotic stress-responsive genes were stimulated to resist drought stress in purple wheat GZ1, and anthocyanin biosynthesis also participated in the drought defense response through several structural genes.
基金financially supported by ‘‘Double Hundred” Plan for Foreign Experts in Shandong Province, Chinafinancially supported by the National Natural Science Foundation of China (32072053, 31971874, and 32171990)+4 种基金Taishan Scholars Project (tsqn201812123)Key Research and Development Program of Shandong Province (2020CXGC010805)Open Project Funding of the State Key Laboratory of Crop Stress Adaptation and Improvement (CX1130A0920014)State Key Laboratory of Plant Cell and Chromosome Engineering (PCCE-KF-2019-04)Iran National Science Foundation (INSF) Grant 99014038
文摘Powdery mildew of wheat is a destructive disease seriously threatening yield and quality worldwide.Comprehensive dissection of new resistance-related loci/genes is necessary to control this disease.LS5082 is a Chinese wheat breeding line with resistance to powdery mildew.Genetic analysis,using the populations of LS5082 and three susceptible parents(Shannong 29,Shimai 22 and Huixianhong),indicated that a single dominant gene,tentatively designated PmLS5082,conferred seedling resistance to different Blumeria graminis f.sp.tritici(Bgt)isolates.Bulked segregant RNA-Seq was carried out to map PmLS5082 and to profile differentially expressed genes associated with PmLS5082.PmLS5082 was mapped to a 0.7 cM genetic interval on chromosome arm 2BL,which was aligned to a 0.7 Mb physical interval of 710.3–711.0 Mb.PmLS5082 differs from the known powdery mildew(Pm)resistance genes on chromosome arm 2BL based on their origin,chromosome positions and/or resistance spectrum,suggesting PmLS5082 is most likely a new Pm gene/allele.Through clusters of orthologous groups and kyoto encyclopedia of genes and genomes analyses,differentially expressed genes(DEGs)associated with PmLS5082 were profiled.Six DEGs in the PmLS5082 interval were confirmed to be associated with PmLS5082 via qPCR analysis,using an additional set of wheat samples and time-course analysis postinoculation with Bgt isolate E09.Ten closely linked markers,including two kompetitive allele-specific PCR markers,were confirmed to be suitable for marker-assisted selection of PmLS5082 in different genetic backgrounds,thus can be used to detect PmLS5082 and pyramid it with other genes in breeding programs.
文摘: To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) near-isogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2+ transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways. The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.
基金the National High Technology Research and Development Programme of China(No.2002AA603015)
文摘The mRNA differential display (DDRT-PCR) technique was adopted to find out the genes related tosettlement metamorphosis development process of Ruditapes philippinarum larvae.In this study,we haveobtained three hundred and forty-six amplification bands in total from pediveliger larvae,veliger larvae,eye spot larvae and post-larvae.Sixty-five out of three hundred and forty-six bands are distinctly differen-tial display from band pattern,which can be put into four groups,standing for different expression char-acters.Sixteen differential display bands were cloned,sequenced and analyzed and nine different se-quences are obtained in the study.Three sequences have higher similarity to the cDNAs deposited indatabase and three are very similar to the rDNA of other species,considered as the rDNA of Ruditapesphilippinarum.The rest three sequences are found to be novel sequences after analyzed.Their accessionnumbers are AY916799,AY916798,and AY916797 respectively.We thought the novel sequences arepossibly relevant to the early embryo development of Ruditapes philippinarum larvae and can provide somefundamental understandings that are helpful for the improvement of scallop seed raising industry.
基金supported by the Key Program for Science and Technology Development of Henan Province [122102310174]the Zoology Key Subject of Henan Province
文摘Objective: To screen and analyze key express sequence tags (ESTs) which were differentially displayed in every period of SD rats' primary hepatic carcinoma and reveal the molecular mechanism of carcinogenesis. Methods: Using diethylnitrosamine (DENA) as a cancerigenic agent, animal models with different phases of primary hepatic cancer were constructed in SD rats. Rats were respectively sacrificed at d 14, d 28, d 56, d 77, d 105 and d 112 after the rats received DENA by gavage, then the livers were harvested. One part of the livers was classified according to their pathological changes, while the other was reserved for molecular mechanism studies on hepatocarcinogenesis. The differentially expressed genes were isolated from both normal and morbid tissues by mRNA differential display technique (DDRT-PCR). After the fragments were sequenced, bioinformatics were .used to analyze the results. Results: Twelve differentially expressed cDNA fragments were obtained. Nine fragments had the homology with known cDNA clones, especially EST-7 was similar to BN/SsNHsdMCW mitochondrion gene and the identity was 100% which suggested EST-7 may be the part of BN/SsNHsdMCW mitochondrion gene. In contrast, other three fragments (EST-1, EST-3 and EST-5) had extremely low identity to any genes registered in GENBANK databases. Conclusions: BN/SsNHsdMCW mitochondrion gene was expressed in different periods of hepatocarcinogenesis. Moreover, EST-I, EST-3 and EST-5 were suggested to contribute to the development of rat hepatocarcinogenesis, and thus may be candidates of new targets of oncogenes or cancer suppressor genes.
基金supported by the National Natural Science Foundation of China(grant nos.31921005 and 31991211)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant nos.XDA24010104,XDA24010204,and XDA24030102)+1 种基金the Special Information Program of the Chinese Academy of Sciences(grant no.XXH13506-408)the China Agricultural Research System(grant no.CARS-03).
文摘Studying the regulatory mechanisms that drive nitrogen-use efficiency(NUE)in crops is important for sustainable agriculture and environmental protection.In this study,we generated a high-quality genome assembly for the high-NUE wheat cultivar Kenong 9204 and systematically analyzed genes related to nitrogen uptake and metabolism.By comparative analyses,we found that the high-affinity nitrate transporter gene family had expanded in Triticeae.Further studies showed that subsequent functional differentiation endowed the expanded family members with saline inducibility,providing a genetic basis for improving the adaptability of wheat to nitrogen deficiency in various habitats.To explore the genetic and molecular mechanisms of high NUE,we compared genomic and transcriptomic data from the high-NUE cultivar Kenong 9204(KN9204)and the low-NUE cultivar Jing 411 and quantified their nitrogen accumulation under high-and low-nitrogen conditions.Compared with Jing 411,KN9204 absorbed significantly more nitrogen at the reproductive stage after shooting and accumulated it in the shoots and seeds.Transcriptome data analysis revealed that nitrogen deficiency clearly suppressed the expression of genes related to cell division in the young spike of Jing 411,whereas this suppression of gene expression was much lower in KN9204.In addition,KN9204 maintained relatively high expression of NPF genes for a longer time than Jing 411 during seed maturity.Physiological and transcriptome data revealed that KN9204 was more tolerant of nitrogen deficiency than Jing 411,especially at the reproductive stage.The high NUE of KN9204 is an integrated effect controlled at different levels.Taken together,our data provide new insights into the molecular mechanisms of NUE and important gene resources for improving wheat cultivars with a higher NUE trait.
基金This work was supported by two grants from the National Nature Science Foundation of China(31371607 and 31071412)a grant from Hi-Tech Research and Development Program of China(2012AA101105).
文摘With the increase in consumer demand,wheat grain quality improvement has become a focus in China and worldwide.Transcriptome analysis is a powerful approach to research grain traits and elucidate their genetic regulation.In this study,two cDNA libraries from the developing grain and leaf-stem components of bread wheat cultivar,Nongda211,were sequenced using Roche/454 technology.There were 1061274 and 1516564 clean reads generated from grain and leaf-stem,respectively.A total of 61393 high-quality unigenes were obtained with an average length of 1456 bp after de novo assembly.The analysis of the 61393 unigenes involved in the biological processes of the grain showed that there were 7355 differentially expressed genes upregulated in the grain library.Gene ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that many transcription products and transcription factors associated with carbohydrate and protein metabolism were abundantly expressed in the grain.These results contribute to excavate genes associated with wheat quality and further study how they interact.