The effects of protein characteristics and the proportion of gluten on end-use quality in 13 Korean wheat cultivars for three years were verified in this study. Year, cultivar, and the interaction between the year and...The effects of protein characteristics and the proportion of gluten on end-use quality in 13 Korean wheat cultivars for three years were verified in this study. Year, cultivar, and the interaction between the year and the cultivar influenced protein characteristics, the proportion of gluten except for γ-and ω-gliadin using RP-HPLC(reversed-phase high-performance liquid chromatography), and end-use quality. Protein characteristics and the proportion of gluten in Korean wheat cultivars were between those of Australian standard white(ASW) and hard wheat(AH). Korean wheat cultivars exhibited a higher average α+β gliadin proportion than imported wheat, a γ-gliadin proportion similar to that of dark northern spring wheat, and the same ω-gliadin proportion as AH. They showed a bread-loaf volume intermediate between those of ASW and AH and a texture of cooked noodles similar to that of soft white wheat, but less springiness than imported wheat. The cookie diameter of Korean wheat cultivars was similar to that of hard red winter wheat. There was a correlation between bread-loaf volume and protein characteristics, except for the protein content in Korean wheat cultivars. Springiness and cohesiveness of cooked noodles were not correlated with protein characteristics, while hardness was correlated with the protein content and water absorption of a mixograph. Cookie diameter was negatively correlated with the sodium dodecyl sulfate(SDS) sedimentation volume and water absorption of a mixograph. The end-use quality was not correlated with any proportion of gluten composition. Principal component analysis(PCA) showed that the proportion of gluten was not related to the quality of the bread(both PCs, 81.3%), noodle(77.7%), and cookie(82.4%). PCA explained that Keumkang is suitable for superior bread, while Uri is good for cooked noodles and cookies.展开更多
The prevention of fungal spoilage is an essential consideration in wheat storage.Recent studies have revealed that volatile organic compounds(VOCs),possibly with natural fungicidal properties,could be produced from st...The prevention of fungal spoilage is an essential consideration in wheat storage.Recent studies have revealed that volatile organic compounds(VOCs),possibly with natural fungicidal properties,could be produced from stored wheat grains.In this study,the antifungal effect of hexanal,a main component of VOCs from stored wheat,against spoilage fungi on agar plate and in high-moisture wheat grains were investigated via the gas fumigation method.And the impact of hexanal fumigation on grain quality was evaluated through analysis of the malondialdehyde content,fatty acid values,germination percentages and vigor of 16%and 18%moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor.The results of in vitro antifungal experiments on agar plates revealed that the minimum inhibitory concentration and minimum fungicidal(fatal)concentration of hexanal against the five fungi were 4–14 folds and 4–7 folds lower than those of propionic acid,respectively.The fungal spoilage of high-moisture wheat grains inoculated with pure fungal spores and with naturally occurring fungi could be completely inhibited by 1.66 mmol/L hexanal vapor.During 5-week storage of high-moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor,the malondialdehyde content in high-moisture wheat grains did not change significantly in all samples,and fatty acid values were slightly higher in 18%moisture wheat than in 16%moisture wheat.The germination percentages and vigor of wheat samples decreased with increased hexanal vapor concentrations and moisture content.These results indicated that hexanal fumigation could be used as an alternative chemical control method to prevent the fungal spoilage of postharvest wheat.展开更多
Before the advent of the wheat genomic era, a wide range of studies were conducted to understand the chemistry and functions of the wheat storage proteins,which are the major determinants of wheat flour the suitabilit...Before the advent of the wheat genomic era, a wide range of studies were conducted to understand the chemistry and functions of the wheat storage proteins,which are the major determinants of wheat flour the suitability of wheat flour for various end products, such as bread, noodles and cakes.Wheat grain protein is divided into gluten and non-gluten fractions and the wheat processing quality mainly depends on the gluten fractions.Gluten provides the unique extensibility and elasticity of dough that are essential for various wheat end products.Disulfide bonds are formed between cysteine residues,which is the chemical bases for the physical properties of dough.Based on the SDS-extractability, grain protein is divided into SDS-unextractable polymeric protein(UPP)and SDS-extractable polymeric protein.The percentage of UPP is positively related to the formation of disulfide bonds in the dough matrix.In the wheat genomic era, new glutenins with long repetitive central domains that contain a high number of consensus hexapeptide and nonapeptide motifs as well as high content of cysteine and glutamine residues should be targeted.展开更多
基金the support of Cooperative Research Program for Agriculture Science & Technology Development (Project title: Establishment of quality criteria for high uniformity in end-use of Korean wheat cultivars, PJ011009), Rural Development Administration, Republic of Korea
文摘The effects of protein characteristics and the proportion of gluten on end-use quality in 13 Korean wheat cultivars for three years were verified in this study. Year, cultivar, and the interaction between the year and the cultivar influenced protein characteristics, the proportion of gluten except for γ-and ω-gliadin using RP-HPLC(reversed-phase high-performance liquid chromatography), and end-use quality. Protein characteristics and the proportion of gluten in Korean wheat cultivars were between those of Australian standard white(ASW) and hard wheat(AH). Korean wheat cultivars exhibited a higher average α+β gliadin proportion than imported wheat, a γ-gliadin proportion similar to that of dark northern spring wheat, and the same ω-gliadin proportion as AH. They showed a bread-loaf volume intermediate between those of ASW and AH and a texture of cooked noodles similar to that of soft white wheat, but less springiness than imported wheat. The cookie diameter of Korean wheat cultivars was similar to that of hard red winter wheat. There was a correlation between bread-loaf volume and protein characteristics, except for the protein content in Korean wheat cultivars. Springiness and cohesiveness of cooked noodles were not correlated with protein characteristics, while hardness was correlated with the protein content and water absorption of a mixograph. Cookie diameter was negatively correlated with the sodium dodecyl sulfate(SDS) sedimentation volume and water absorption of a mixograph. The end-use quality was not correlated with any proportion of gluten composition. Principal component analysis(PCA) showed that the proportion of gluten was not related to the quality of the bread(both PCs, 81.3%), noodle(77.7%), and cookie(82.4%). PCA explained that Keumkang is suitable for superior bread, while Uri is good for cooked noodles and cookies.
基金supported by the NationalNatural Science Foundation of China(Project No.31772023)the National Key Research and Development Project of China(Project Nos.2017YFC1600903 and 2017YFD0401404)+1 种基金the National Key Research and Development Project of China(Project No.2019YFC1605303-04)the Scientific Research foundation of Henan University of Technology(Project No.2018RCJH14).
文摘The prevention of fungal spoilage is an essential consideration in wheat storage.Recent studies have revealed that volatile organic compounds(VOCs),possibly with natural fungicidal properties,could be produced from stored wheat grains.In this study,the antifungal effect of hexanal,a main component of VOCs from stored wheat,against spoilage fungi on agar plate and in high-moisture wheat grains were investigated via the gas fumigation method.And the impact of hexanal fumigation on grain quality was evaluated through analysis of the malondialdehyde content,fatty acid values,germination percentages and vigor of 16%and 18%moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor.The results of in vitro antifungal experiments on agar plates revealed that the minimum inhibitory concentration and minimum fungicidal(fatal)concentration of hexanal against the five fungi were 4–14 folds and 4–7 folds lower than those of propionic acid,respectively.The fungal spoilage of high-moisture wheat grains inoculated with pure fungal spores and with naturally occurring fungi could be completely inhibited by 1.66 mmol/L hexanal vapor.During 5-week storage of high-moisture wheat grains fumigated with 1.66,2.49,and 3.31 mmol/L hexanal vapor,the malondialdehyde content in high-moisture wheat grains did not change significantly in all samples,and fatty acid values were slightly higher in 18%moisture wheat than in 16%moisture wheat.The germination percentages and vigor of wheat samples decreased with increased hexanal vapor concentrations and moisture content.These results indicated that hexanal fumigation could be used as an alternative chemical control method to prevent the fungal spoilage of postharvest wheat.
文摘Before the advent of the wheat genomic era, a wide range of studies were conducted to understand the chemistry and functions of the wheat storage proteins,which are the major determinants of wheat flour the suitability of wheat flour for various end products, such as bread, noodles and cakes.Wheat grain protein is divided into gluten and non-gluten fractions and the wheat processing quality mainly depends on the gluten fractions.Gluten provides the unique extensibility and elasticity of dough that are essential for various wheat end products.Disulfide bonds are formed between cysteine residues,which is the chemical bases for the physical properties of dough.Based on the SDS-extractability, grain protein is divided into SDS-unextractable polymeric protein(UPP)and SDS-extractable polymeric protein.The percentage of UPP is positively related to the formation of disulfide bonds in the dough matrix.In the wheat genomic era, new glutenins with long repetitive central domains that contain a high number of consensus hexapeptide and nonapeptide motifs as well as high content of cysteine and glutamine residues should be targeted.