As a staple food crop for one-third of the world's population, common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) plays an important role in humans' food security. However, the genetic variation of cultivat...As a staple food crop for one-third of the world's population, common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) plays an important role in humans' food security. However, the genetic variation of cultivated wheat has been dramatically narrowed by genetic erosion under the modem cultivation system, resulting in vulnerability to biotic and abiotic stresses (Jiang et al., 1994; Friebe et al., 1996). The wild relatives of wheat represent a large reservoir of superior genes, and transferring these alien genes to modem cultivars through chromosome engineering is a successful method of broadening the genetic diversity of wheat (Chen et al., 2003;展开更多
Stem rust, caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn. (Pgt), is a destructive wheat disease and has the potential to cause significant yield losses (Olivera et al., 2015;Soko et al., ...Stem rust, caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn. (Pgt), is a destructive wheat disease and has the potential to cause significant yield losses (Olivera et al., 2015;Soko et al., 2018). The emergence of Pgt race TTKSK, virulent to the widely deployed stem rust resistance gene Sr31 and originally named as isolate Pgt-Ug99 (Pretorius et al., 2000).展开更多
Ug99, also designated as TFKSK, is a race of Puccinia graminis Pers.:Pers f. sp. tn'tici Eriks. and E. Henn (Pgt) with broad virulence to wheat. It is the first known Pgt race possessing virulence to Sr31, a stem ...Ug99, also designated as TFKSK, is a race of Puccinia graminis Pers.:Pers f. sp. tn'tici Eriks. and E. Henn (Pgt) with broad virulence to wheat. It is the first known Pgt race possessing virulence to Sr31, a stem rust resistance (Sr) gene deployed in wheat varieties world- wide (Singh et al., 2011 ). Since the first detection of TFKSK in 1998, a total of 13 Ug99 variants have been identified in several African countries.展开更多
偃麦草属是小麦近缘种属中应用较为广泛的野生资源之一,作为小麦遗传改良和种质创新的重要基因源,在创制小麦桥梁材料和遗传育种方面发挥了重要作用。小偃麦创制工作始于20世纪20年代,是通过远缘杂交,将偃麦草属植物的染色体或染色体组...偃麦草属是小麦近缘种属中应用较为广泛的野生资源之一,作为小麦遗传改良和种质创新的重要基因源,在创制小麦桥梁材料和遗传育种方面发挥了重要作用。小偃麦创制工作始于20世纪20年代,是通过远缘杂交,将偃麦草属植物的染色体或染色体组遗传成分导入到普通小麦中,培育小偃麦(部分)双二倍体、异附加系、异代换系、易位系和渐渗系。小偃麦(部分)双二倍体主要是八倍体小偃麦(AABBDDXX, 2n=8x=56)和六倍体小偃麦(AABBXX,2n=6x=42),来源于偃麦草的染色体组(XX)多为混合染色体组(异源染色体组)。我国自20世纪50年代开始小麦与偃麦草远缘杂交工作,创制了类型丰富的小偃麦,在小麦抗病研究和新种质创制方面表现突出,在此基础上培育出一系列高产优质的小麦品种。小偃麦创制过程中,中间偃麦草(Thinopyrum intermedium (Host) Barkworth&D. R. Dewey)和3种长穗偃麦草(Thinopyrum elongatum (Host) D. R.Dewey×ponticum(Podp.) Barkworth&D. R. Dewey)因易于同小麦杂交,具有抗寒、抗旱、耐盐碱、抗小麦多种病虫害等特性,成为创制小偃麦的主要亲本来源,应用范围最广。本研究从5部分综述小偃麦的创制与应用研究进展,旨在为小偃麦的研发利用和小麦遗传资源创新提供科学依据。展开更多
十倍体长穗偃麦草[Thinopyrum ponticum(Popd.)Barkworth and Dewey]具有抗寒、抗旱、耐盐碱、茎秆粗壮、穗长花多等优异性状,是小麦遗传改良的重要基因资源。本课题组从小麦与十倍体长穗偃麦草的杂交后代中筛选出一份抗条锈病的衍生系C...十倍体长穗偃麦草[Thinopyrum ponticum(Popd.)Barkworth and Dewey]具有抗寒、抗旱、耐盐碱、茎秆粗壮、穗长花多等优异性状,是小麦遗传改良的重要基因资源。本课题组从小麦与十倍体长穗偃麦草的杂交后代中筛选出一份抗条锈病的衍生系CH18067,本研究对其进行形态学、细胞学、原位杂交、分子标记、抗条锈病性等综合鉴定。细胞学观察结果显示,CH18067的体细胞染色体数目为42条,在减数分裂中期Ⅰ的染色体构型为2n=21Ⅱ,在减数分裂后期Ⅰ同源染色体可均等分离,表明其细胞学遗传稳定。利用寡核苷酸探针Oligo-pTa535(红色)和Oligo-pSc119.2(绿色)对CH18067进行FISH鉴定,结果显示,CH18067缺失小麦2D和4D染色体,同时含有2对具有特殊带型的染色体;通过对CH18067进行FISH-GISH、mc-GISH、液相芯片以及染色体核型分析,发现2对具有特殊带型的染色体中,在长臂和短臂末端均呈现Oligo-pTa535探针红色带型的染色体为十倍体长穗偃麦草的2J染色体,在着丝粒位置和长臂末端均呈现Oligo-pTa535探针红色带型的染色体为十倍体长穗偃麦草的4J^(S)染色体,说明CH18067为小麦-十倍体长穗偃麦草2J(2D)+4J^(S)(4D)双重异代换系。在第二部分同源群和第四部分同源群分别筛选出3个特异性标记,可用于追踪小麦遗传背景中长穗偃麦草的2J和4J^(S)染色体。形态学和条锈病抗性鉴定结果显示,CH18067具有矮秆、长粒等特性,且在成株期高抗小麦条锈病。以上结果表明,CH18067可作为小麦条锈病抗性育种和遗传研究的候选种质。展开更多
CH5026是携带中间偃麦草抗病基因的渗入系。为了更好地利用CH5026,拓宽小麦抗性育种资源,对其抗条锈性来源和遗传模式进行了分析,对抗性基因进行了染色体定位并构建了遗传连锁图谱。在苗期和成株期对CH5026及其亲本分别接种条锈菌流行小...CH5026是携带中间偃麦草抗病基因的渗入系。为了更好地利用CH5026,拓宽小麦抗性育种资源,对其抗条锈性来源和遗传模式进行了分析,对抗性基因进行了染色体定位并构建了遗传连锁图谱。在苗期和成株期对CH5026及其亲本分别接种条锈菌流行小种CYR31、CYR32和CYR33。结果表明,CH5026在苗期和成株期对这3个条锈菌小种均表现出免疫或近免疫,且与其抗性供体TAI7045及其野生亲本中间偃麦草抗病侵染型相似。对其与感病品种(系)的杂交后代F1、F2、F2:3和BC1群体接种CYR32进行成株期抗性遗传机制分析,证实CH5026对CYR32的抗性由1对显性核基因控制。基因组原位杂交未检测到外源DNA杂交信号。用569对SSR引物对CH5026/台长29的192个F2群体进行分析,发现3个与抗性基因连锁的SSR标记:Xgwm210、Xwmc382和Xgpw7101,抗性基因位点与两翼邻近连锁标记Xwmc382和Xgpw7101的遗传距离分别为6.0,4.7 c M。利用中国春缺四体、双端体材料将该基因及其连锁标记定位在染色体2AS上。通过基因来源及连锁分子标记多态性比较,这个抗条锈病基因与已知定位于染色体2AS上的抗性基因不同,很可能是一个新的抗条锈病新基因,暂将其命名为Yr CH5026。展开更多
基金supported by a grant from the National High Technology Research and Development Program("863" Program) of China(No. 2011AA100103)
文摘As a staple food crop for one-third of the world's population, common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) plays an important role in humans' food security. However, the genetic variation of cultivated wheat has been dramatically narrowed by genetic erosion under the modem cultivation system, resulting in vulnerability to biotic and abiotic stresses (Jiang et al., 1994; Friebe et al., 1996). The wild relatives of wheat represent a large reservoir of superior genes, and transferring these alien genes to modem cultivars through chromosome engineering is a successful method of broadening the genetic diversity of wheat (Chen et al., 2003;
基金supported by the Natural Science Foundation of China (No. 31571644)the National Key Basic Research Program (No. 2015CB150106)the Ministry of Science and Technology of China (2014DFA31540)
文摘Stem rust, caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn. (Pgt), is a destructive wheat disease and has the potential to cause significant yield losses (Olivera et al., 2015;Soko et al., 2018). The emergence of Pgt race TTKSK, virulent to the widely deployed stem rust resistance gene Sr31 and originally named as isolate Pgt-Ug99 (Pretorius et al., 2000).
基金supported by the Ministry of Science and Technology of China (No. 2014DFA31540)Chinese Academy of Sciences (No. SAJC201305)the Bill & Melinda Gates Foundation to Cornell University for the Borlaug Global Rust Initiative (BGRI) Durable Rust Resistance in Wheat (DRRW) Project
文摘Ug99, also designated as TFKSK, is a race of Puccinia graminis Pers.:Pers f. sp. tn'tici Eriks. and E. Henn (Pgt) with broad virulence to wheat. It is the first known Pgt race possessing virulence to Sr31, a stem rust resistance (Sr) gene deployed in wheat varieties world- wide (Singh et al., 2011 ). Since the first detection of TFKSK in 1998, a total of 13 Ug99 variants have been identified in several African countries.
文摘偃麦草属是小麦近缘种属中应用较为广泛的野生资源之一,作为小麦遗传改良和种质创新的重要基因源,在创制小麦桥梁材料和遗传育种方面发挥了重要作用。小偃麦创制工作始于20世纪20年代,是通过远缘杂交,将偃麦草属植物的染色体或染色体组遗传成分导入到普通小麦中,培育小偃麦(部分)双二倍体、异附加系、异代换系、易位系和渐渗系。小偃麦(部分)双二倍体主要是八倍体小偃麦(AABBDDXX, 2n=8x=56)和六倍体小偃麦(AABBXX,2n=6x=42),来源于偃麦草的染色体组(XX)多为混合染色体组(异源染色体组)。我国自20世纪50年代开始小麦与偃麦草远缘杂交工作,创制了类型丰富的小偃麦,在小麦抗病研究和新种质创制方面表现突出,在此基础上培育出一系列高产优质的小麦品种。小偃麦创制过程中,中间偃麦草(Thinopyrum intermedium (Host) Barkworth&D. R. Dewey)和3种长穗偃麦草(Thinopyrum elongatum (Host) D. R.Dewey×ponticum(Podp.) Barkworth&D. R. Dewey)因易于同小麦杂交,具有抗寒、抗旱、耐盐碱、抗小麦多种病虫害等特性,成为创制小偃麦的主要亲本来源,应用范围最广。本研究从5部分综述小偃麦的创制与应用研究进展,旨在为小偃麦的研发利用和小麦遗传资源创新提供科学依据。
文摘十倍体长穗偃麦草[Thinopyrum ponticum(Popd.)Barkworth and Dewey]具有抗寒、抗旱、耐盐碱、茎秆粗壮、穗长花多等优异性状,是小麦遗传改良的重要基因资源。本课题组从小麦与十倍体长穗偃麦草的杂交后代中筛选出一份抗条锈病的衍生系CH18067,本研究对其进行形态学、细胞学、原位杂交、分子标记、抗条锈病性等综合鉴定。细胞学观察结果显示,CH18067的体细胞染色体数目为42条,在减数分裂中期Ⅰ的染色体构型为2n=21Ⅱ,在减数分裂后期Ⅰ同源染色体可均等分离,表明其细胞学遗传稳定。利用寡核苷酸探针Oligo-pTa535(红色)和Oligo-pSc119.2(绿色)对CH18067进行FISH鉴定,结果显示,CH18067缺失小麦2D和4D染色体,同时含有2对具有特殊带型的染色体;通过对CH18067进行FISH-GISH、mc-GISH、液相芯片以及染色体核型分析,发现2对具有特殊带型的染色体中,在长臂和短臂末端均呈现Oligo-pTa535探针红色带型的染色体为十倍体长穗偃麦草的2J染色体,在着丝粒位置和长臂末端均呈现Oligo-pTa535探针红色带型的染色体为十倍体长穗偃麦草的4J^(S)染色体,说明CH18067为小麦-十倍体长穗偃麦草2J(2D)+4J^(S)(4D)双重异代换系。在第二部分同源群和第四部分同源群分别筛选出3个特异性标记,可用于追踪小麦遗传背景中长穗偃麦草的2J和4J^(S)染色体。形态学和条锈病抗性鉴定结果显示,CH18067具有矮秆、长粒等特性,且在成株期高抗小麦条锈病。以上结果表明,CH18067可作为小麦条锈病抗性育种和遗传研究的候选种质。
文摘CH5026是携带中间偃麦草抗病基因的渗入系。为了更好地利用CH5026,拓宽小麦抗性育种资源,对其抗条锈性来源和遗传模式进行了分析,对抗性基因进行了染色体定位并构建了遗传连锁图谱。在苗期和成株期对CH5026及其亲本分别接种条锈菌流行小种CYR31、CYR32和CYR33。结果表明,CH5026在苗期和成株期对这3个条锈菌小种均表现出免疫或近免疫,且与其抗性供体TAI7045及其野生亲本中间偃麦草抗病侵染型相似。对其与感病品种(系)的杂交后代F1、F2、F2:3和BC1群体接种CYR32进行成株期抗性遗传机制分析,证实CH5026对CYR32的抗性由1对显性核基因控制。基因组原位杂交未检测到外源DNA杂交信号。用569对SSR引物对CH5026/台长29的192个F2群体进行分析,发现3个与抗性基因连锁的SSR标记:Xgwm210、Xwmc382和Xgpw7101,抗性基因位点与两翼邻近连锁标记Xwmc382和Xgpw7101的遗传距离分别为6.0,4.7 c M。利用中国春缺四体、双端体材料将该基因及其连锁标记定位在染色体2AS上。通过基因来源及连锁分子标记多态性比较,这个抗条锈病基因与已知定位于染色体2AS上的抗性基因不同,很可能是一个新的抗条锈病新基因,暂将其命名为Yr CH5026。