期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Groundwater Contamination with NO_3-N in a Wheat-Corn Cropping System in the North China Plain 被引量:20
1
作者 ZHAO Bing-Zi ZHANG Jia-Bao +3 位作者 M. FLURY ZHU An-Ning JIANG Qi-Ao BI Jin-Wei 《Pedosphere》 SCIE CAS CSCD 2007年第6期721-731,共11页
The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater poll... The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater pollution by NO_3-N,which is applied to fields in large amounts of more than 400 kg NO_3-N ha^(-1)as fertilizer.A field experiment was established in 2002 to examine the relationship among N fertilization rate,soil NO_3-N,and NO_3-N groundwater contamination.Two adjacent fields were fertilized with local farmers' N fertilization rate(LN)and double the normal application rate(HN),respectively,and managed under otherwise identical conditions.The fields were under a traditional summer corn/winter wheat rotation.Over a 22-month period,we monitored NO_3-N concentrations in both bulk soil and soil pore water in 20-40 cm increments up to 180 cm depth.We also monitored NO_3-N concentrations in groundwater and the depth of the groundwater table.No significant differences in soil NO_3-N were observed between the LN and HN treatment.We identified NO_3-N plumes moving downward through the soil profile.The HN treatment resulted in significantly higher groundwater NO_3-N,relative to the LN treatment,with groundwater NO_3-N consistently exceeding the maximum safe level of 10 mg L^(-1),but groundwater NO_3-N above the maximum safe level was also observed in the LN treatment after heavy rain.Heavy rain in June,July,and August 2003 caused increased NO_3-N leaching through the soil and elevated NO_3-N concentrations in the groundwater.Concurrent rise of the groundwater table into NO_3-N- rich soil layers also contributed to the increased NO_3-N concentrations in the groundwater.Our results indicate that under conditions of average rainfall,soil NO_3-N was accumulated in the soil profile.The subsequent significantly higher- than-average rainfalls continuously flushed the soil NO_3-N into deeper layers and raised the groundwater table,which caused continuous groundwater contamination with NO_3-N.The results suggest that under common farming practices in the North China Plain,groundwater contamination with NO_3-N was likely,especially during heavy rainfalls,and the degree of groundwater contamination appeared to be proportional to the N application rates.Decreasing fertilization rates, splitting fertilizer inputs,and optimizing irrigation scheduling had potential to reduce groundwater NO_3-N contamination. 展开更多
关键词 field experiment groundwater contamination NO3-N wheat-corn cropping system
下载PDF
Integrated soil, water and agronomic management effects on crop productivity and selected soil properties in Western Ethiopia 被引量:2
2
作者 Teklu Erkossa Timothy O.Williams Fanuel Laekemariam 《International Soil and Water Conservation Research》 SCIE CSCD 2018年第4期305-316,共12页
Land degradation is a major challenge limiting crop production in Ethiopia. Integrated soil and water conservation is widely applied as a means to reverse the trend and increase productivity. This study investigated t... Land degradation is a major challenge limiting crop production in Ethiopia. Integrated soil and water conservation is widely applied as a means to reverse the trend and increase productivity. This study investigated the effects of such integrated approaches at two sites, Jeldu and Diga, inWestern Ethiopia. A split plot design with physical soil and water conservation in the main plots and agronomic practices in the sub plots was employed. Maize (Zea mays L.) followed by groundnut (Arachis hypogaea L.) at Diga, and wheat (Triticum aestivum) followed by faba bean (Vicia faba L.) were the test crops. Surface soils were sampled before sowing and after the crop harvest, and analyzed for selected parameters. Soil moisture content during the growing period was also monitored. The use of soil bund increased soil moisture content, and significantly (P < 0.05) increased days to flowering and maturity, kernel weight and harvest index, grain yield of the test crops, with the exception of maize. The improved agronomic practices (intercropping, fertilization and row planting) significantly (P < 0.05) increased grain yield of all the test crops. The effect of the treatments on soil parameters may require longer time to be evident. Although the increase in crop yield due to soil bund and the improved agronomic practices is eminent, economic analysis is necessary before recommending the widespread use of the improved options. 展开更多
关键词 Land degradation SOIL bund inter-cropping Improved crop varieties Crop-livestock systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部