Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and M...Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and Materials: The DFR-TSET combined the Stanford 6-field and McGill rotational methods. Dual 6 MeV electron beams in high dose total skin electron mode were used for DFR-TSET on a commercial linac. Beam profiles and dosimetric properties were measured using solid phantoms. The dose rate at expanded source-to-surface distance (SSD) was a combination of static rate and rotational rate. In vivo dosimetry of patient skin was performed on patients’ skin using film, metal oxide semiconductor field-effect transistors (MOSFET), and optically stimulated luminescent dosimeters (OSLD). Results: Dual field rotational total skin electron therapy exhibited good (≤±10%) uniformity in the beam profiles in the vertical direction at an extended SSD of 332 cm with a gantry angulation of ±20˚ deviated from the horizontal direction. In-vivo measurements confirmed acceptable uniformity of the patients’ total body surfaces and revealed anatomically self-blocked or shielded areas where underdosing occurred. Conclusions: The clinical implementation of DFR-TSET effectively utilizes the special mode on a linac. This technique provides short beam-on times, uniform dose distribution, large treatment field, and reduced dose of x-ray contamination to the patients. In-vivo measurements indicate satisfactory delivery and dose uniformity of the prescribed dose. Electron boost fields are recommended at normal SSDs to address underdosed areas.展开更多
The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidati...The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.展开更多
Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation...Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.展开更多
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th...Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.展开更多
A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP...A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP) or plus P and K (NPK), all with or without manure (M). Different long-term fertilization practices affected the yields under the rotation system of wheat and maize differently and the effects on yields was in a general trend of MNPK>MNP>MN>NPK>NP>M>N>the control. The average contribution rate of soil fertility to the highest yield was 37.9%, and the rest 62.1% came from fertilizer applications. The yield effects of the chemical fertilizers were in the order of N>P>K and were increased by application of manure.Balanced fertilization with multielement chemical fertilizers and manure can be effective in maintaining growth in agricultural production. Combined application of chemical fertilizer and organic manure also increased the content of soil organic matter.展开更多
We investigate the rotation profile of solar-like stars with magnetic fields. A diffu- sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the ...We investigate the rotation profile of solar-like stars with magnetic fields. A diffu- sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 tr level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 MG, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.展开更多
The Al-5Cu alloys were prepared by different treatment methods,including adding a refiner Al-5Ti-1B,exerting a rotating magnetic field(RMF),and compound treatment of both refiner and RMF.The effects of treatment metho...The Al-5Cu alloys were prepared by different treatment methods,including adding a refiner Al-5Ti-1B,exerting a rotating magnetic field(RMF),and compound treatment of both refiner and RMF.The effects of treatment methods on the microstructure,properties,and solid solubility of the Al-5Cu alloy were investigated.The optimal magnetic field parameters and addition amount of refiner were confirmed by experiment.Results show that either RMF or adding refiner Al-5Ti-1B alone can refine the grain size,and the refining effect can be further improved by a compound refining treatment with optimized magnetic field parameters(120 A current and 8 Hz frequency) and 1.0wt.% Al-5Ti-1B refiner(RMF*+Al-5Ti-1B*).The average grain size is decreased to 68.1 μm,which is 60.8%,21.1%,and 83.5% lower than that of the alloy treated by the optimized rotating magnetic field,the Al-5Ti-1B refiner,and the alloy without any treatment,respectively.The tensile strength and elongation of the alloy reach 232.5 MPa and 18.6%,respectively,which are obviously higher than those of the alloys treated by rotating magnetic field,Al-5Ti-1B refiner,and the alloy without any treatment,respectively.Additionally,the solid solubility of the alloy is also obviously improved compared to the alloys treated by other methods.展开更多
Employing Biot’s theory of wave propagation in liquid saturated porous media,the effect of rotation and magnetic field on wave propagation in a hollow poroelastic circular of infinite extent is investigated.An exact ...Employing Biot’s theory of wave propagation in liquid saturated porous media,the effect of rotation and magnetic field on wave propagation in a hollow poroelastic circular of infinite extent is investigated.An exact closed form solution is presented.General frequency equations for propagation of poroelastic cylinder are obtained when the boundaries are stress free.The frequencies are calculated for poroelastic cylinder for different values of magnetic field and rotation.Numerical results are given and illustrated graphically.The results indicate that the effect of rotation,and magnetic field are very pronounced.Such a model would be useful in large-scale parametric studies of mechanical response.展开更多
[ Objective] The paper was to explore ecological effect of paddy field rotation on reducing disease, pests and weeds of rice. [ Method] With long-term continuous cropping rice as control, according to field location e...[ Objective] The paper was to explore ecological effect of paddy field rotation on reducing disease, pests and weeds of rice. [ Method] With long-term continuous cropping rice as control, according to field location experiments for consecutive 14 years, the effects of paddy field rotation on diseases, pests and weeds of rice were studied in details. [ Result] Paddy field rotation in some extent could reduce diseases, pests and weeds of rice. The diseased plant rate and disease in- dex of rice sheath blight in early rice under paddy field rotation treatment were averagely 10% and 0.4% lower than those in continuous cropping treatment, respec- tively. The diseased plant rate and disease index of rice sheath blight in late rice were 17.7% and 13.3% lower than those in treatments with continuous cropping mode, respectively. The diseased plant rate and disease index of rice false smut in both early rice and late rice under rotation treatments were lower than those in treatments with continuous cropping mode. White leaf rate caused by rice leaf roller and dry heart rate caused by striped rice borer under rotation treatments were significantly lower than those under continuous cropping treatment. The growth status of weeds under rotation treatments was weaker than that under continuous cropping treatment. [ Conclusion] The paper has important significance on alleviating diseases, pests and weeds of rice and improvement of ecological environment of farmland, and provides theoretical basis for sustainable development of agriculture.展开更多
The observed correlation of the angular momenta L<sup>ik</sup> and magnetic moments μ<sub>lm</sub> of celestial bodies (the Sun, planets and stars) was discussed by many au...The observed correlation of the angular momenta L<sup>ik</sup> and magnetic moments μ<sub>lm</sub> of celestial bodies (the Sun, planets and stars) was discussed by many authors but without any explanation. In this paper, a possible explanation of this phenomenon is suggested. It is shown that the function satisfies Maxwell equations and can be considered as a function which determines the electro-magnetic properties of rotating heavy bodies. The R<sub>iklm</sub> is the Riemann tensor, which determines the gravitational field of the body, r<sub>g</sub> is the gravitational radius of the body, and η is the constant which has to be determined by observations. The field Φ<sub>lm</sub> describes the observed correlation. It explains the stability of magnetic field of white dwarfs and neutron stars despite the ohmic dissipation. The function Φ<sub>l0</sub><sub></sub> describes the electric field created by rotating heavy bodies. The presented theory does not contradict any existed experiments and observations.展开更多
Time-resolved Kerr rotation spectroscopy is used to determine the sign of the g factor of carriers in a semiconductor material, with the help of a rotatable magnetic field in the plane of the sample. The spin precessi...Time-resolved Kerr rotation spectroscopy is used to determine the sign of the g factor of carriers in a semiconductor material, with the help of a rotatable magnetic field in the plane of the sample. The spin precession signal of carriers at a fixed time delay is measured as a function of the orientation of the magnetic field with a fixed strength B. The signal has a sine-like form and its phase determines the sign of the g factor of carriers. As a natural extension of previous methods to measure the (time-resolved) photoluminescence or time-resolved Kerr rotation signal as a function of the magnetic field strength with a fixed orientation, such a method gives the correct sign of the g factor of electrons in GaAs. Furthermore, the sign of carriers in a (Ga, Mn)As magnetic semiconductor is also found to be negative.展开更多
In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre...In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.展开更多
A numerical-analytical method is applied for the two-dimensional magnetic field computation in rotational electric machines in this paper. The analytical expressions for air gap magnetic field are derived. The pole pa...A numerical-analytical method is applied for the two-dimensional magnetic field computation in rotational electric machines in this paper. The analytical expressions for air gap magnetic field are derived. The pole pairs in the expressions are taken into account so that the solution region can be reduced within one periodic range. The numerical and analytical magnetic field equations are linked with equal vector magnetic potential boundary conditions. The magnetic field of a brushless permanent magnet machine is computed by the proposed method. The result is compared to that obtained by finite element method so as to validate the correction of the method.展开更多
In this work, we study an analytical procedure for evaluation of the displacement and stresses in fibre-reinforced anisotropic elastic media under effects of rotation and initial magnetic field, and due to the applica...In this work, we study an analytical procedure for evaluation of the displacement and stresses in fibre-reinforced anisotropic elastic media under effects of rotation and initial magnetic field, and due to the application of the rotation and initial magnetic field. Effects of rotation and initial magnetic field are analyzed theoretically and computed numerically. Numerical results have been given and illustrated graphically. Comparison was made with the results obtained in the presence of rotation and initial magnetic field in fibre-reinforced anisotropic and isotropic elastic media. The results indicate the effect of rotation and initial magnetic field.展开更多
Recently I published a paper in the journal ALAMT (Advances in Linear Algebra & Matrix Theory) and explored the possibility of obtaining products of vectors in dimensions higher than three [1]. In continuation to ...Recently I published a paper in the journal ALAMT (Advances in Linear Algebra & Matrix Theory) and explored the possibility of obtaining products of vectors in dimensions higher than three [1]. In continuation to this work, it is proposed to develop, through dimensional analogy, a vector field with notation and properties analogous to the curl, in this case applied to the space IR4. One can see how the similarities are obvious in relation to the algebraic properties and the geometric structures, if the rotations are compared in spaces of three and four dimensions.展开更多
The problem regarding the reflection of plane waves in a transversely isotropic dissipative medium is considered, in which we are studying about the reflection of incidence waves in initially stressed dissipative half...The problem regarding the reflection of plane waves in a transversely isotropic dissipative medium is considered, in which we are studying about the reflection of incidence waves in initially stressed dissipative half space. After solving the governing equations, we find the two complex quasi-P (qP) and quasi-SV (qSV) waves. The occurrence of reflected waves is studied to calculate the reflection coefficient and the energy partition of incidence wave at the plane boundary of the dissipative medium. Numerical example is considered for the reflection coefficient and the partition of incident energy, in which we study about the effect of rotation, initial stresses and magnetic field.展开更多
The aim of this paper is to study the effects of rotation and magnetic field on the plane vibrations in a transversely isotropic material of an infinite hollow cylinder.The natural frequency of the plane vibrations in...The aim of this paper is to study the effects of rotation and magnetic field on the plane vibrations in a transversely isotropic material of an infinite hollow cylinder.The natural frequency of the plane vibrations in the case of harmonic vibrations has been obtained.The natural frequencies are calculated numerically and the effects of rotation and magnetic field are discussed.The numerical results obtained have been illustrated graphically to understand the behavior of frequency equation with different values of frequencyωunder effects the rotation and magnetic field.Comparison was made with the results obtained in the presence and absence of the rotation and magnetic field.The results indicate that the effect of rotation and magnetic field are very pronounced.展开更多
This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone.It offers a solution with an exact closed form.The authors got and ex...This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone.It offers a solution with an exact closed form.The authors got and examined numerically the general frequency equation for poroelastic bone.Moreover,they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation.Unlike the results of previous studies,the authors noticed little frequency dispersion in the wet bone.The proposed model will be applicable to wide-range parametric projects of bone mechanical response.Examining the vibration of surface waves in rotating cylindrical,long human bones under the magnetic field can have an impact.The findings of the study are offered in graphs.Then,a comparison with the results of the literature is conducted to show the effect of rotation and magnetic field on the wave propagation phenomenon.It is worth noting that the results of the study highly match those of the literature.展开更多
The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show th...The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show that the impact of angular velocity in the former is equivalent to the impact of the magnetic field in the latter. We consider scenarios conducive to comparable trajectories for these two distinct areas of physics. We extend the analysis considering two separate routes. For the rotating frame we investigate the impact of friction and for the magnetic field the effect of field in-homogeneities. We utilize Mathematica [1] throughout, most notably for solving coupled partial differential equations.展开更多
文摘Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and Materials: The DFR-TSET combined the Stanford 6-field and McGill rotational methods. Dual 6 MeV electron beams in high dose total skin electron mode were used for DFR-TSET on a commercial linac. Beam profiles and dosimetric properties were measured using solid phantoms. The dose rate at expanded source-to-surface distance (SSD) was a combination of static rate and rotational rate. In vivo dosimetry of patient skin was performed on patients’ skin using film, metal oxide semiconductor field-effect transistors (MOSFET), and optically stimulated luminescent dosimeters (OSLD). Results: Dual field rotational total skin electron therapy exhibited good (≤±10%) uniformity in the beam profiles in the vertical direction at an extended SSD of 332 cm with a gantry angulation of ±20˚ deviated from the horizontal direction. In-vivo measurements confirmed acceptable uniformity of the patients’ total body surfaces and revealed anatomically self-blocked or shielded areas where underdosing occurred. Conclusions: The clinical implementation of DFR-TSET effectively utilizes the special mode on a linac. This technique provides short beam-on times, uniform dose distribution, large treatment field, and reduced dose of x-ray contamination to the patients. In-vivo measurements indicate satisfactory delivery and dose uniformity of the prescribed dose. Electron boost fields are recommended at normal SSDs to address underdosed areas.
基金supported by the National Natural Science Foundation of China (Grant No.52225404)Beijing Outstanding Young Scientist Program (Grant No.BJJWZYJH01201911413037)Central University Excellent Youth Team Funding Project (Grant No.2023YQTD01).
文摘The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.
基金National Key R&D Program of China(2023YFB3507004)National Natural Science Foundation of China(U21A20148)+2 种基金International Partnership Program of Chinese Academy of Sciences(116134KYSB20210052)Heye Health Technology Chong Ming Project(HYCMP2021010)CASHIPS Director’s Fund(BJPY2021A06)。
文摘Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.
文摘Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.
文摘A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP) or plus P and K (NPK), all with or without manure (M). Different long-term fertilization practices affected the yields under the rotation system of wheat and maize differently and the effects on yields was in a general trend of MNPK>MNP>MN>NPK>NP>M>N>the control. The average contribution rate of soil fertility to the highest yield was 37.9%, and the rest 62.1% came from fertilizer applications. The yield effects of the chemical fertilizers were in the order of N>P>K and were increased by application of manure.Balanced fertilization with multielement chemical fertilizers and manure can be effective in maintaining growth in agricultural production. Combined application of chemical fertilizer and organic manure also increased the content of soil organic matter.
基金Supported by the National Natural Science Foundation of China though Grants 10173021, 10433030,10773003 and 10778601supported by the Ministry of Science and Technology of the People’s Republic of China through Grant 2007CB815406
文摘We investigate the rotation profile of solar-like stars with magnetic fields. A diffu- sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 tr level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 MG, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.
文摘The Al-5Cu alloys were prepared by different treatment methods,including adding a refiner Al-5Ti-1B,exerting a rotating magnetic field(RMF),and compound treatment of both refiner and RMF.The effects of treatment methods on the microstructure,properties,and solid solubility of the Al-5Cu alloy were investigated.The optimal magnetic field parameters and addition amount of refiner were confirmed by experiment.Results show that either RMF or adding refiner Al-5Ti-1B alone can refine the grain size,and the refining effect can be further improved by a compound refining treatment with optimized magnetic field parameters(120 A current and 8 Hz frequency) and 1.0wt.% Al-5Ti-1B refiner(RMF*+Al-5Ti-1B*).The average grain size is decreased to 68.1 μm,which is 60.8%,21.1%,and 83.5% lower than that of the alloy treated by the optimized rotating magnetic field,the Al-5Ti-1B refiner,and the alloy without any treatment,respectively.The tensile strength and elongation of the alloy reach 232.5 MPa and 18.6%,respectively,which are obviously higher than those of the alloys treated by rotating magnetic field,Al-5Ti-1B refiner,and the alloy without any treatment,respectively.Additionally,the solid solubility of the alloy is also obviously improved compared to the alloys treated by other methods.
文摘Employing Biot’s theory of wave propagation in liquid saturated porous media,the effect of rotation and magnetic field on wave propagation in a hollow poroelastic circular of infinite extent is investigated.An exact closed form solution is presented.General frequency equations for propagation of poroelastic cylinder are obtained when the boundaries are stress free.The frequencies are calculated for poroelastic cylinder for different values of magnetic field and rotation.Numerical results are given and illustrated graphically.The results indicate that the effect of rotation,and magnetic field are very pronounced.Such a model would be useful in large-scale parametric studies of mechanical response.
基金Supported by National Science and Technology Support Program"Integration and Demonstration of Green,Efficient and Circular Agricultural Technology in Poyang Lake Ecological Economic Zone"(2012BAD14B14-01)National Science and Technology Support Program"Integrated Research and Demonstration of Circular Production Comprehensive Technology in Southern Hilly Farmland(2007BAD89B18-03)
文摘[ Objective] The paper was to explore ecological effect of paddy field rotation on reducing disease, pests and weeds of rice. [ Method] With long-term continuous cropping rice as control, according to field location experiments for consecutive 14 years, the effects of paddy field rotation on diseases, pests and weeds of rice were studied in details. [ Result] Paddy field rotation in some extent could reduce diseases, pests and weeds of rice. The diseased plant rate and disease in- dex of rice sheath blight in early rice under paddy field rotation treatment were averagely 10% and 0.4% lower than those in continuous cropping treatment, respec- tively. The diseased plant rate and disease index of rice sheath blight in late rice were 17.7% and 13.3% lower than those in treatments with continuous cropping mode, respectively. The diseased plant rate and disease index of rice false smut in both early rice and late rice under rotation treatments were lower than those in treatments with continuous cropping mode. White leaf rate caused by rice leaf roller and dry heart rate caused by striped rice borer under rotation treatments were significantly lower than those under continuous cropping treatment. The growth status of weeds under rotation treatments was weaker than that under continuous cropping treatment. [ Conclusion] The paper has important significance on alleviating diseases, pests and weeds of rice and improvement of ecological environment of farmland, and provides theoretical basis for sustainable development of agriculture.
文摘The observed correlation of the angular momenta L<sup>ik</sup> and magnetic moments μ<sub>lm</sub> of celestial bodies (the Sun, planets and stars) was discussed by many authors but without any explanation. In this paper, a possible explanation of this phenomenon is suggested. It is shown that the function satisfies Maxwell equations and can be considered as a function which determines the electro-magnetic properties of rotating heavy bodies. The R<sub>iklm</sub> is the Riemann tensor, which determines the gravitational field of the body, r<sub>g</sub> is the gravitational radius of the body, and η is the constant which has to be determined by observations. The field Φ<sub>lm</sub> describes the observed correlation. It explains the stability of magnetic field of white dwarfs and neutron stars despite the ohmic dissipation. The function Φ<sub>l0</sub><sub></sub> describes the electric field created by rotating heavy bodies. The presented theory does not contradict any existed experiments and observations.
基金Project supported by the National Basic Research Program of China (Grant No. 2009CB929301)the National Natural Science Foundation of China (Grant No. 10911130232)
文摘Time-resolved Kerr rotation spectroscopy is used to determine the sign of the g factor of carriers in a semiconductor material, with the help of a rotatable magnetic field in the plane of the sample. The spin precession signal of carriers at a fixed time delay is measured as a function of the orientation of the magnetic field with a fixed strength B. The signal has a sine-like form and its phase determines the sign of the g factor of carriers. As a natural extension of previous methods to measure the (time-resolved) photoluminescence or time-resolved Kerr rotation signal as a function of the magnetic field strength with a fixed orientation, such a method gives the correct sign of the g factor of electrons in GaAs. Furthermore, the sign of carriers in a (Ga, Mn)As magnetic semiconductor is also found to be negative.
文摘In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.
文摘A numerical-analytical method is applied for the two-dimensional magnetic field computation in rotational electric machines in this paper. The analytical expressions for air gap magnetic field are derived. The pole pairs in the expressions are taken into account so that the solution region can be reduced within one periodic range. The numerical and analytical magnetic field equations are linked with equal vector magnetic potential boundary conditions. The magnetic field of a brushless permanent magnet machine is computed by the proposed method. The result is compared to that obtained by finite element method so as to validate the correction of the method.
文摘In this work, we study an analytical procedure for evaluation of the displacement and stresses in fibre-reinforced anisotropic elastic media under effects of rotation and initial magnetic field, and due to the application of the rotation and initial magnetic field. Effects of rotation and initial magnetic field are analyzed theoretically and computed numerically. Numerical results have been given and illustrated graphically. Comparison was made with the results obtained in the presence of rotation and initial magnetic field in fibre-reinforced anisotropic and isotropic elastic media. The results indicate the effect of rotation and initial magnetic field.
文摘Recently I published a paper in the journal ALAMT (Advances in Linear Algebra & Matrix Theory) and explored the possibility of obtaining products of vectors in dimensions higher than three [1]. In continuation to this work, it is proposed to develop, through dimensional analogy, a vector field with notation and properties analogous to the curl, in this case applied to the space IR4. One can see how the similarities are obvious in relation to the algebraic properties and the geometric structures, if the rotations are compared in spaces of three and four dimensions.
文摘The problem regarding the reflection of plane waves in a transversely isotropic dissipative medium is considered, in which we are studying about the reflection of incidence waves in initially stressed dissipative half space. After solving the governing equations, we find the two complex quasi-P (qP) and quasi-SV (qSV) waves. The occurrence of reflected waves is studied to calculate the reflection coefficient and the energy partition of incidence wave at the plane boundary of the dissipative medium. Numerical example is considered for the reflection coefficient and the partition of incident energy, in which we study about the effect of rotation, initial stresses and magnetic field.
文摘The aim of this paper is to study the effects of rotation and magnetic field on the plane vibrations in a transversely isotropic material of an infinite hollow cylinder.The natural frequency of the plane vibrations in the case of harmonic vibrations has been obtained.The natural frequencies are calculated numerically and the effects of rotation and magnetic field are discussed.The numerical results obtained have been illustrated graphically to understand the behavior of frequency equation with different values of frequencyωunder effects the rotation and magnetic field.Comparison was made with the results obtained in the presence and absence of the rotation and magnetic field.The results indicate that the effect of rotation and magnetic field are very pronounced.
基金funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.D-668-305-1441.
文摘This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone.It offers a solution with an exact closed form.The authors got and examined numerically the general frequency equation for poroelastic bone.Moreover,they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation.Unlike the results of previous studies,the authors noticed little frequency dispersion in the wet bone.The proposed model will be applicable to wide-range parametric projects of bone mechanical response.Examining the vibration of surface waves in rotating cylindrical,long human bones under the magnetic field can have an impact.The findings of the study are offered in graphs.Then,a comparison with the results of the literature is conducted to show the effect of rotation and magnetic field on the wave propagation phenomenon.It is worth noting that the results of the study highly match those of the literature.
文摘The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show that the impact of angular velocity in the former is equivalent to the impact of the magnetic field in the latter. We consider scenarios conducive to comparable trajectories for these two distinct areas of physics. We extend the analysis considering two separate routes. For the rotating frame we investigate the impact of friction and for the magnetic field the effect of field in-homogeneities. We utilize Mathematica [1] throughout, most notably for solving coupled partial differential equations.