期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The microbial community,nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat-maize double-cropping systems
1
作者 Zeli Li Fuli Fang +10 位作者 Liang Wu Feng Gao Mingyang Li Benhang Li Kaidi Wu Xiaomin Hu Shuo Wang Zhanbo Wei Qi Chen Min Zhang Zhiguang Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3592-3609,共18页
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi... Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients. 展开更多
关键词 potassium fertilizer gradient microbial community wheat-maize double cropping climate change yield
下载PDF
Model construction for field operation machinery selection and configuration in wheat-maize double cropping system
2
作者 Fu Zhang Tianhua Chen +3 位作者 Shuai Teng Jiajia Wang Ruiliang Xu Zhijun Guo 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第4期82-89,共8页
In order to scientifically and reasonably select the field operation machinery in the wheat-maize double cropping system,first,the selection evaluation index system was constructed through the existing national standa... In order to scientifically and reasonably select the field operation machinery in the wheat-maize double cropping system,first,the selection evaluation index system was constructed through the existing national standards and industry standards.Then the selection evaluation model was established based on the improved fuzzy comprehensive evaluation method.And the method of subjective weight and objective weight was used to overcome the drawbacks of the previous single weighting method that could not take into account the subject and object information of each indicator,and the weight value of each index was obtained in the evaluation system.Finally,the tillage process was used as an example,the field experiment was carried out to obtain the evaluation index value,and the model of selection evaluation was verified.The selection results of moldboard plough and rotary cultivator were as follows:the order of the comprehensive evaluation results of the moldboard plough results was ranked from high to low as 1LFK-435(IIM),1LFK-535(IM),1LF-342(IIIM),1LFT-445(IVM),1LFT-545(VM),and the best machine type of the moldboard plough was IIM;the order of the comprehensive evaluation results of the rotary cultivator was ranked from high to low as 1GQKGN-240(IIIR),1GKNSM-250(IVR),1GKN-230K(IR),1GKN-250K(IIR),1GQKGN-220(VR),and the optimal model of the rotary cultivator was IIIR.The experimental results showed that the results obtained by the evaluation model were in agreement with the local actual situation.The evaluation model will provide a scientific method for the selection of wheat and maize double cropping field operation machinery. 展开更多
关键词 wheat-maize double cropping system agricultural machinery parts selection mode evaluation system fuzzy comprehensive evaluation method combination weight
原文传递
Analysis of the Bacterial Communities in Lime Concretion Black Soil upon the Incorporation of Crop Residues
3
作者 Shao-Qiang Tao Qiang Xia +3 位作者 Lin Zhu Jing-jing Chen Ya- Nan Wang Bing Qin 《Open Journal of Soil Science》 2012年第3期312-319,共8页
To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R5... To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R518 primers targeting the 16S rRNA genes of V3 region. The amplified fragments were analyzed by perpendicular DGGE. Analyzing of species richness index S and Shannon diversity index H revealed that there was a high diversity of soil bacterial community compositions among all treatments after incorporation of crop residues and fertilizing under field conditions. Eleven DGGE bands recovered were re-amplified, sequenced. Phylogenetic analysis of the representative DGGE fingerprints identified four groups of the prokaryotic communities in the soil by returning wheat residues and fertilizing under field conditions. The bacterial communities belonged to gamma proteobacterium, Cupriavidus sp, halophilic eubacterium, Acidobacterium sp, Sorangium sp, delta proteobacterium, Streptococcus sp and Streptococcus agalactiae were main bacterial communities. Principal Component Analysis (PCA) showed that there were the differences in DNA profiles among the six treatments. It showed that wheat residue returning, maize residue returning and fertilizing all can improve bacterial diversity in varying degrees. As far as improvement of bacterial diversity was concerned, wheat residue returning was higher than fertilizing, and fertilizing higher than maize residue returning. 展开更多
关键词 crop RESIDUES Bacterial Community LIME CONCRETION Black Soil Denaturing Gradient Gel ELECTROPHORESIS (DGGE) 16S rDNA wheat-maize System
下载PDF
Soil physical properties,nutrients,and crop yield with two-year tillage rotations under a winter wheat-summer maize double cropping system 被引量:3
4
作者 Baozhong Yin Pan Liu +4 位作者 Yongwei Cui Zhaohui Hu Xiangling Li Zhihua Pan Wenchao Zhen 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第1期172-181,共10页
Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillag... Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillage treatments were designed as wheat subsoiling-maize no tillage(WS-MN),wheat rotary tillage-maize subsoiling(WR-MS),wheat subsoiling-maize subsoiling(WS-MS),and conventional wheat rotary tillage-maize no tillage(WR-MN)as a control.Among the four treatments,WS-MN and WR-MS were single-season subsoiling treatments,and WS-MS was a two-season subsoiling treatment.The average soil bulk density decreased by 7.6%in the single-and double-season subsoiling groups compared to the WR-MN group,and the total porosity and noncapillary porosity increased by 10.7%and 12.2%,respectively.Single-or double-season subsoiling treatment was not conducive to water storage in the 0-20 cm soil layer but increased the water content of the 20-140 cm soil layer,and the average soil water content of the 0-140 cm layer was increased by 11.6%in the two-growing season treatment groups compared with the WR-MN group.In WS-MS and WS-MN groups compared with the WR-MN group,the soil ammonium nitrogen content was increased by an average of 18.6%in 0-20 cm soil and 16.8%in 20-100 cm soil;soil nitrate-nitrogen content was decreased by 13.5%in 0-100 cm soil;total organic carbon and microbial carbon contents in the 15-30 cm soil were increased by 18.1%and 12.7%,respectively;and soil urease,catalase,and alkaline phosphatase activities were increased by 46.1%,15.2%,and 23.1%,respectively.Annual crop yield and water use efficiency increased by 8.9%and 15.0%,respectively,in both the single-and double-season subsoiling treatment groups.This study demonstrated the advantages of subsoiling tillage and suggested that it is suitable for crop cultivation in the Haihe Plain,China. 展开更多
关键词 tillage rotations wheat-maize double cropping soil properties utilization of water and fertilizer crop yield
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部