[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitr...[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.展开更多
A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China...A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.展开更多
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno...Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.展开更多
In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the bas...In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.展开更多
We investigate the nonlinear modes in a rotating double well potential with 79T symmetry. Focus on the existence and stability of the nonlinear PT modes in this system, we found that five types of PT modes can stably ...We investigate the nonlinear modes in a rotating double well potential with 79T symmetry. Focus on the existence and stability of the nonlinear PT modes in this system, we found that five types of PT modes can stably exist by given certain parameter settings. The multistable area between these modes are studied numerically and the bistable and tristable areas are delimited. With different input trial wavefunctions, five types of solitary wave modes are identified. We found that the rotating of the potential can significantly affect the power flow of the fundamental harmonic mode, whose effect is absent for the other modes.展开更多
Rotating disk subjected to stationary slider loading system is a very common mechanical structure. This paper investigates the multibody dynamics of a rotating flexible annular thin disk subjected to double slider loa...Rotating disk subjected to stationary slider loading system is a very common mechanical structure. This paper investigates the multibody dynamics of a rotating flexible annular thin disk subjected to double slider loading systems. Along the rotating disk radial and circumferential directions, two stationary slider loading systems are distributed. System dynamic model is solved by Galerkin's method, and then natural frequency, dynamic stability and mode shape are determined with a quadratic eigenvalue problem. Effects of the distributing positions and interaction mechanism of the double slider loading systems on natural frequency, dynamic stability and mode shape are discussed and investigated.展开更多
The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining ...The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining the inner and outer cylinders at uniform temperatures and concentrations.Buoyancy effects are also considered,with the Boussinesq approximation.The forced convection effect is induced by the outer cylinder rotating with an angular velocity(ω)in an anti-clockwise direction.The studies are made for various combinations of dimensionless numbers;buoyancy ratio number(N),Lewis number(Le),Richardson number(Ri)and Grashof number(Gr).The isotherms,isoconcentrations and streamlines as well as both average and local Nusselt and Sherwood numbers were studied.A finite volume scheme is adopted to solve the transport equations for continuity,momentum,energy and mass transfer.The results indicate that the use of fins on the inner cylinder with outer cylinder rotation,significantly improves the heat and mass transfer in the annulus.展开更多
Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillag...Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillage treatments were designed as wheat subsoiling-maize no tillage(WS-MN),wheat rotary tillage-maize subsoiling(WR-MS),wheat subsoiling-maize subsoiling(WS-MS),and conventional wheat rotary tillage-maize no tillage(WR-MN)as a control.Among the four treatments,WS-MN and WR-MS were single-season subsoiling treatments,and WS-MS was a two-season subsoiling treatment.The average soil bulk density decreased by 7.6%in the single-and double-season subsoiling groups compared to the WR-MN group,and the total porosity and noncapillary porosity increased by 10.7%and 12.2%,respectively.Single-or double-season subsoiling treatment was not conducive to water storage in the 0-20 cm soil layer but increased the water content of the 20-140 cm soil layer,and the average soil water content of the 0-140 cm layer was increased by 11.6%in the two-growing season treatment groups compared with the WR-MN group.In WS-MS and WS-MN groups compared with the WR-MN group,the soil ammonium nitrogen content was increased by an average of 18.6%in 0-20 cm soil and 16.8%in 20-100 cm soil;soil nitrate-nitrogen content was decreased by 13.5%in 0-100 cm soil;total organic carbon and microbial carbon contents in the 15-30 cm soil were increased by 18.1%and 12.7%,respectively;and soil urease,catalase,and alkaline phosphatase activities were increased by 46.1%,15.2%,and 23.1%,respectively.Annual crop yield and water use efficiency increased by 8.9%and 15.0%,respectively,in both the single-and double-season subsoiling treatment groups.This study demonstrated the advantages of subsoiling tillage and suggested that it is suitable for crop cultivation in the Haihe Plain,China.展开更多
基金Supported by Science and Technology Project for Food Production(2011BAD16B15)"11th Five-Year Plan"National Science and Technology Support Program(2008-BADA4B07)Sino-International Plant Nutrition Research Institute(IPNI)Cooperation Project(NMBF-HenanAU-2008)~~
文摘[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.
基金Project supported by the National Natural Science Foundation of China (Nos. 40571071, 30390080 and 30370287)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0511).
文摘A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.
基金the Natural Science Fund of China(70771060)the Production Safety and Supervision of Management Bureau of China(04-116)+3 种基金the National Soft Science Planed Program(2004DGQ3D090)and(2006GXQ3D154)the Natural Science Fund of Shandong Province(Y2006H10)the Social Science Planning Program of Shandong Province(06BJJ005)the Soft-science Planed Program of Shandong Province(2007RKA134)
文摘Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.
文摘In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104083 and 10934011)
文摘We investigate the nonlinear modes in a rotating double well potential with 79T symmetry. Focus on the existence and stability of the nonlinear PT modes in this system, we found that five types of PT modes can stably exist by given certain parameter settings. The multistable area between these modes are studied numerically and the bistable and tristable areas are delimited. With different input trial wavefunctions, five types of solitary wave modes are identified. We found that the rotating of the potential can significantly affect the power flow of the fundamental harmonic mode, whose effect is absent for the other modes.
基金supported by the National Natural Science Foundation of China (51105164)
文摘Rotating disk subjected to stationary slider loading system is a very common mechanical structure. This paper investigates the multibody dynamics of a rotating flexible annular thin disk subjected to double slider loading systems. Along the rotating disk radial and circumferential directions, two stationary slider loading systems are distributed. System dynamic model is solved by Galerkin's method, and then natural frequency, dynamic stability and mode shape are determined with a quadratic eigenvalue problem. Effects of the distributing positions and interaction mechanism of the double slider loading systems on natural frequency, dynamic stability and mode shape are discussed and investigated.
文摘The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining the inner and outer cylinders at uniform temperatures and concentrations.Buoyancy effects are also considered,with the Boussinesq approximation.The forced convection effect is induced by the outer cylinder rotating with an angular velocity(ω)in an anti-clockwise direction.The studies are made for various combinations of dimensionless numbers;buoyancy ratio number(N),Lewis number(Le),Richardson number(Ri)and Grashof number(Gr).The isotherms,isoconcentrations and streamlines as well as both average and local Nusselt and Sherwood numbers were studied.A finite volume scheme is adopted to solve the transport equations for continuity,momentum,energy and mass transfer.The results indicate that the use of fins on the inner cylinder with outer cylinder rotation,significantly improves the heat and mass transfer in the annulus.
基金the Key R&D projects in Hebei Province(Grant No.20326407D)National Key Research and Development Project(Grant No.2017YFD0300906)National Science and Technology Support Project(Grant No.2012BAD04B06).
文摘Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillage treatments were designed as wheat subsoiling-maize no tillage(WS-MN),wheat rotary tillage-maize subsoiling(WR-MS),wheat subsoiling-maize subsoiling(WS-MS),and conventional wheat rotary tillage-maize no tillage(WR-MN)as a control.Among the four treatments,WS-MN and WR-MS were single-season subsoiling treatments,and WS-MS was a two-season subsoiling treatment.The average soil bulk density decreased by 7.6%in the single-and double-season subsoiling groups compared to the WR-MN group,and the total porosity and noncapillary porosity increased by 10.7%and 12.2%,respectively.Single-or double-season subsoiling treatment was not conducive to water storage in the 0-20 cm soil layer but increased the water content of the 20-140 cm soil layer,and the average soil water content of the 0-140 cm layer was increased by 11.6%in the two-growing season treatment groups compared with the WR-MN group.In WS-MS and WS-MN groups compared with the WR-MN group,the soil ammonium nitrogen content was increased by an average of 18.6%in 0-20 cm soil and 16.8%in 20-100 cm soil;soil nitrate-nitrogen content was decreased by 13.5%in 0-100 cm soil;total organic carbon and microbial carbon contents in the 15-30 cm soil were increased by 18.1%and 12.7%,respectively;and soil urease,catalase,and alkaline phosphatase activities were increased by 46.1%,15.2%,and 23.1%,respectively.Annual crop yield and water use efficiency increased by 8.9%and 15.0%,respectively,in both the single-and double-season subsoiling treatment groups.This study demonstrated the advantages of subsoiling tillage and suggested that it is suitable for crop cultivation in the Haihe Plain,China.