ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their grea...ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.展开更多
为进一步提高制动能量回收率,考虑不同工况下驾驶员不同制动意图所需的制动效果,提出了一种四驱电动汽车制动控制策略。首先,针对常规制动工况,基于常规制动意图识别,从制动能量回收率、稳定性和安全性角度分别设计控制策略;其次,针对...为进一步提高制动能量回收率,考虑不同工况下驾驶员不同制动意图所需的制动效果,提出了一种四驱电动汽车制动控制策略。首先,针对常规制动工况,基于常规制动意图识别,从制动能量回收率、稳定性和安全性角度分别设计控制策略;其次,针对滑行工况下的不同滑行制动意图,判断电机制动力是否介入及何时介入,并根据驾驶员所需的滑行距离计算电机制动力的大小;然后,由台架试验获得前后电机外特性并建立前后电机最优利用效率模型;最后,利用Carsim和Simulink进行了联合仿真分析。仿真结果表明,在新欧洲驾驶循环(New European Driving Cycle,NEDC)工况下,与并联控制策略相比,能量回收率提升了13.64百分点;在滑行工况下可有效识别驾驶员需求滑行距离,提升了整车滑行经济性。展开更多
文摘ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.
文摘为进一步提高制动能量回收率,考虑不同工况下驾驶员不同制动意图所需的制动效果,提出了一种四驱电动汽车制动控制策略。首先,针对常规制动工况,基于常规制动意图识别,从制动能量回收率、稳定性和安全性角度分别设计控制策略;其次,针对滑行工况下的不同滑行制动意图,判断电机制动力是否介入及何时介入,并根据驾驶员所需的滑行距离计算电机制动力的大小;然后,由台架试验获得前后电机外特性并建立前后电机最优利用效率模型;最后,利用Carsim和Simulink进行了联合仿真分析。仿真结果表明,在新欧洲驾驶循环(New European Driving Cycle,NEDC)工况下,与并联控制策略相比,能量回收率提升了13.64百分点;在滑行工况下可有效识别驾驶员需求滑行距离,提升了整车滑行经济性。