As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is prop...As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.展开更多
The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. ...The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. In this paper, a novel wheel turn center method is proposed to evaluate the suspension performance. This method is based on the concept and application of wheel turn center (WTC) and sprung mass turn center (SPTC). The vehicle body and each wheel are regarded to be independent rigid bodies and have their own turn centers which reflect respective steering motions and responses. Since the suspension is the link between vehicle body and wheels, the consistence between the sprung mass turn center and the wheel turn center reflects the effect and performance of the suspension system. Firstly, the concept and appropriate calculation method of WTC and SPTC are developed. Then the degree of inconsistence between WTC and SPTC and the time that they achieve consistence, when the vehicle experiences from transient steering to steady steering state, are proposed to evaluate suspension performance. The suspension evaluation tests are conducted under different vehicle velocities and lateral accelerations by using CarSim software. The simulation results show that the inconsistence of steering motion between vehicle body and wheels are mainly at high speeds and low lateral accelerations. Finally, based on the proposed evaluation indexes, the influences of different suspension characteristic parameters on suspension performance and their matches to improve steering coordination are discussed. The proposed wheel turn center method provides a guidance and potential application for suspension evaluation and optimization.展开更多
基金The National Natural Science Foundation of China(No.61272223)the National Key Scientific Apparatus Development of Special Item(No.2012YQ170003-5)
文摘As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.
基金Supported by Changjiang Scholar and Innovative Research Team Plan of China(Grant No.IRT0626)
文摘The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. In this paper, a novel wheel turn center method is proposed to evaluate the suspension performance. This method is based on the concept and application of wheel turn center (WTC) and sprung mass turn center (SPTC). The vehicle body and each wheel are regarded to be independent rigid bodies and have their own turn centers which reflect respective steering motions and responses. Since the suspension is the link between vehicle body and wheels, the consistence between the sprung mass turn center and the wheel turn center reflects the effect and performance of the suspension system. Firstly, the concept and appropriate calculation method of WTC and SPTC are developed. Then the degree of inconsistence between WTC and SPTC and the time that they achieve consistence, when the vehicle experiences from transient steering to steady steering state, are proposed to evaluate suspension performance. The suspension evaluation tests are conducted under different vehicle velocities and lateral accelerations by using CarSim software. The simulation results show that the inconsistence of steering motion between vehicle body and wheels are mainly at high speeds and low lateral accelerations. Finally, based on the proposed evaluation indexes, the influences of different suspension characteristic parameters on suspension performance and their matches to improve steering coordination are discussed. The proposed wheel turn center method provides a guidance and potential application for suspension evaluation and optimization.