Tread wear and rolling contact fatigue (RCF) damage propagated on railway wheels are the two extremely important focal points as they can tremendously deteriorate wheel/rail interactions and hunting stability and dest...Tread wear and rolling contact fatigue (RCF) damage propagated on railway wheels are the two extremely important focal points as they can tremendously deteriorate wheel/rail interactions and hunting stability and destroy wheel surface materials, and subsequently, cut down the lifetime of the wheels. The on-board anti-slip controllers are of essence aiming to hold back the striking slipping of the powered wheelsets under low-adhesion wheel/rail conditions. This paper intends to investigate the impact of anti-slip control on wheel tread wear and fatigue damage under diverse wheel/rail friction conditions. To this end, a prediction model for wheel wear and fatigue damage evolution on account of a comprehensive vehicle–track interaction model is extended, where the wheel/rail non-Hertzian contact algorithm is used. Furthermore, the effect of frictional wear on the fatigue damage at wheel surface is considered. The simulation results indicate that the wheel/rail contact is full-slip under the low-adhesion conditions with braking effort. The wear amount under the low-adhesion conditions is observably higher than that under the dry condition. It is further suggested that the wheel tread is prone to suffering more serious wear and fatigue damage issues with a higher anti-slip control threshold compared to that with a lower one.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51735012,52072317,and 51825504)State Key Laboratory of Traction Power(Grant No.2021TPL-T08).
文摘Tread wear and rolling contact fatigue (RCF) damage propagated on railway wheels are the two extremely important focal points as they can tremendously deteriorate wheel/rail interactions and hunting stability and destroy wheel surface materials, and subsequently, cut down the lifetime of the wheels. The on-board anti-slip controllers are of essence aiming to hold back the striking slipping of the powered wheelsets under low-adhesion wheel/rail conditions. This paper intends to investigate the impact of anti-slip control on wheel tread wear and fatigue damage under diverse wheel/rail friction conditions. To this end, a prediction model for wheel wear and fatigue damage evolution on account of a comprehensive vehicle–track interaction model is extended, where the wheel/rail non-Hertzian contact algorithm is used. Furthermore, the effect of frictional wear on the fatigue damage at wheel surface is considered. The simulation results indicate that the wheel/rail contact is full-slip under the low-adhesion conditions with braking effort. The wear amount under the low-adhesion conditions is observably higher than that under the dry condition. It is further suggested that the wheel tread is prone to suffering more serious wear and fatigue damage issues with a higher anti-slip control threshold compared to that with a lower one.