Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the firs...Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the first half of the twentieth century.In agricultural lands,forests,and bad-lands,stone-capped pedestals have been used as qualitative and semi-quantitative indicators of active,'extreme'erosion.Little work has been reported on using capstone pedestal data for quantifying soil loss.We postulate that three distinct capstone pedestal types may be present in any given location and that a detailed analysis of a pedestal height histogram may be used to recognize their populations.This analysis can subsequently inform if soil loss can be reliably estimated and if so,which of the existing methods using pedestal height data will provide more accurate results.The three proposed capstone pedestal types are:(1)neo-pedestals formed underneath surface stones exposed by(partial)removal of the soil surface cover;(2)endo-pedestals formed underneath stones that were buried in the soil but have been exposed by erosion;and(3)phoenix-pedestals formed underneath stones from collapsed pedestals.In the pedestal height histogram of any given location,a skew to smaller heights may indicate the existence of endo-and/or phoenix-pedestals,which may be revealed as a bi-(or tri)modal distribution when using a smaller bin size.This concept was applied to a case study where soil loss had been monitored for control plots and mulched plots during a 5-year period following wildfire in a eucalypt plantation.We measured pedestal heights and used methods to quantitatively assess soil loss from soil pedestal data in the available literature.Soil pedestal data at the end of the 5-year period under or overestimated soil loss in the control treatment,with results ranging from 60 to 115%of measured soil loss,depending on the method.It is postulated that phoenix-and endo-pedestals may be a driving factor behind the observed discrepancies.We discuss how future research may provide more insight into dominant processes,and how frequency distributions may be used to select the best methods for estimating soil loss from pedestals.展开更多
Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stac...Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stacks because they have marine notch-like concave sidewalls at their base, and more importantly, the lake is immediately adjacent to the bay, which is exposed to the open sea. However, rock pillars similar in shape and size can also be found at the top of Queshi Mountain, which is only about 300 meters northwest of the lake and about 85 meters above sea level. Therefore, the marine origin of Cape Stone Forest is seriously questioned. In this study, 3D imagery and drone technology were used to collect data in the investigations without direct manual measurements in the water or on the mountain. It shows that the concave sidewalls of the rock pillars in the lake and on the mountains occur at different heights and are exposed to different directions, while a natural sea stack on Mayu Island at the mouth of Shantou Bay has a horizontal notch parallel to the sea level, although the granite rock of the sea stack is the same as that of the lake and the mountains. The eastern side of the island, where the sea stack is located, is exposed to the open sea but blocks large waves for the rock pillars in the lake. Therefore, the origin of Cape Stone Forest cannot be explained by wave-based mechanisms. The only satisfactory explanation that takes into account all the field evidence is that the narrow rock pillars of the lake and mountain were formed by chemical weathering that penetrated closely the spaced joints of the granite rock, and the notch-like concave sidewalls were formed by more effective chemical weathering at the base of the pillars.展开更多
Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesio...Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.展开更多
Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This a...Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This article introduces a calibration algorithm for the wheel-rail force that leverages graph neural networks and long short-term memory networks.Initially,a comprehensive wheel-rail force detection system for trains was constructed,encompassing two key components:an instrumented wheelset and a ground wheel-rail force measuring system.Subsequently,utilizing this system,two distinct datasets were acquired from the track inspection vehicle:instrumented wheelset data and ground wheel-rail force data,a feedforward neural network was employed to calibrate the instrumented wheelset data,referencing the ground wheel-rail force data.Furthermore,ground wheel-rail force data for the locomotive was obtained for the corresponding road section.This data was then integrated with the calibrated instrumented wheelset data from the track inspection vehicle.Leveraging the GNN-LSTM network,the article establishes a mapping relationship model between the wheel-rail force of the track inspection vehicle and the locomotive wheel-rail force.This model facilitates continuous measurement of locomotive wheel-rail forces across three typical scenarios:straight sections,long and steep downhill sections,and small curve radius sections.展开更多
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the...Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.展开更多
Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM ph...Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM phase have recently been studied on EAST. An edge spatial structure of density fluctuation and its dithering temporal evolution is observed for the first time on the EAST tokamak during the L-H transition phase. A coherent mode usually appears during the ELM-free phase prior to the first ELM on EAST tokamak. The mode frequency gradually decreases as the pedestal evolves. Analysis shows that the coherent mode is in the pedestal region inside the separatrix. In plasma with type-III ELMs, a precursor mode before ELM is usually observed. The frequency of the precursor was initially about 150 kHz and gradually decreased till the next ELM. The mode amplitude increases or shows saturation before ELM. In the plasma with compound ELMs composed of high and low frequency ELMs, the precursor was also observed before the high frequency ELM while the harmonic oscillations with frequencies of 20 kHz, 40 kHz and 60 kHz appear before the low frequency ELM.展开更多
The pedestal characteristic is an important basis for high confinement mode (H- mode) research. Because of the finite spatial resolution of Thomson scattering (TS) diagnostic on Experimental Advanced Superconducti...The pedestal characteristic is an important basis for high confinement mode (H- mode) research. Because of the finite spatial resolution of Thomson scattering (TS) diagnostic on Experimental Advanced Superconducting Tokamak (EAST), it is necessary to characterize the pedestal with a suitable functional form. Based on simulated and experimental data of EAST, it is shown that the two-line method with a bilinear fitting has better reproducibility of pedestal parameters than hyperbolic tangent (tanh) and modified hyperbolic tangent (mtanh) methods. This method has been applied to EAST type I edge localized mode (ELM) discharges, and the electron pedestal density is found to be proportional to the line-averaged density and the edge pressure gradient is found to be proportional to the pedestal pressure. Furthermore, the ion poloidal gyro-radius has been identified as the suitable parameter to describe the pedestal pressure width.展开更多
The pedestal of outdoor furnishings is a facility of courtyard outdoor furnishings. It is an important part of ceremonial furnishings in official buildings. The Qing-style pedestal of outdoor furnishings has unique sh...The pedestal of outdoor furnishings is a facility of courtyard outdoor furnishings. It is an important part of ceremonial furnishings in official buildings. The Qing-style pedestal of outdoor furnishings has unique shapes and ornamentations as well as rich artistic connotation. In addition to having significant artistic value and historical value, it also embodies the user’s aesthetic taste.展开更多
A low sidelobe aperture design method of multi-step amplitude quantization with pedestal is proposed, and general analysis and formulas are described. The computation results compared with our previous method "Mu...A low sidelobe aperture design method of multi-step amplitude quantization with pedestal is proposed, and general analysis and formulas are described. The computation results compared with our previous method "Multi-Step Amplitude Quantization(MSAQ)" on peak side-lobe level, aperture efficiency, normalized input power and sidelobe degradation with tolerance are given. It is shown that, under the same conditions, the method presented in this paper is better than the MSAQ.展开更多
An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rai...An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort.展开更多
The dynamic model of a pedestal looseness rotor system is built and the dynamics of the system near the resonance region is analyzed using the KBM method. Then the asymptotic method to study a dynamic system with slow...The dynamic model of a pedestal looseness rotor system is built and the dynamics of the system near the resonance region is analyzed using the KBM method. Then the asymptotic method to study a dynamic system with slow-changing parameters is used to study the starting and braking course of the system. Finally, the analytical results are proved by experiment. The results can be used in the inspecting and fault diagnosis of a rotor system of this type.展开更多
The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This p...The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result.展开更多
为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连...为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连接松动故障的振动特性敏感性更高,轴系的振动信号对转子故障的振动特性敏感性更高;转子不平衡故障和转子不对中故障表现出不同的频谱特征,转子不平衡故障的频谱特征表现为1倍振动主要频率(amplitude power frequency,APF)幅值增大,且随着故障程度的增加,幅值呈现了逐渐减小的趋势,转子不对中故障的频谱特征表现为产生新的振动特征频率2APF,且随着故障程度的增大,信号幅值逐渐增大;支座连接松动故障表现为频谱图中的主频变为3APF,并出现新的2APF和1/2分数谐波频率.展开更多
The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of th...The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work.展开更多
Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different an...Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models.展开更多
基金supported by CESAM by FCT/MCTES (UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020)and MED (UIDB/05183/2020)to FCT/MEC through national fundsthe co-funding by the FEDER,within the PT2020 Partnership Agreement and Compete 2020,and projects FIRECNUTS (PTDC/AGRCFL/104559/2008)+2 种基金CASCADE (ENV.2011.2.1.4-2/283068),which is funded by the European Unionthe FCT CEEC funding of Frank G.A.Verheijen (CEECIND/02509/2018),Sergio A.Prats (CEECIND/01473/2020),funded by national funds (OE)the SOILCOMBAT project (PTDC/EAM-AMB/0474/2020)through the Portuguese Foundation for Science and Technology (FCT/MCTES).
文摘Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the first half of the twentieth century.In agricultural lands,forests,and bad-lands,stone-capped pedestals have been used as qualitative and semi-quantitative indicators of active,'extreme'erosion.Little work has been reported on using capstone pedestal data for quantifying soil loss.We postulate that three distinct capstone pedestal types may be present in any given location and that a detailed analysis of a pedestal height histogram may be used to recognize their populations.This analysis can subsequently inform if soil loss can be reliably estimated and if so,which of the existing methods using pedestal height data will provide more accurate results.The three proposed capstone pedestal types are:(1)neo-pedestals formed underneath surface stones exposed by(partial)removal of the soil surface cover;(2)endo-pedestals formed underneath stones that were buried in the soil but have been exposed by erosion;and(3)phoenix-pedestals formed underneath stones from collapsed pedestals.In the pedestal height histogram of any given location,a skew to smaller heights may indicate the existence of endo-and/or phoenix-pedestals,which may be revealed as a bi-(or tri)modal distribution when using a smaller bin size.This concept was applied to a case study where soil loss had been monitored for control plots and mulched plots during a 5-year period following wildfire in a eucalypt plantation.We measured pedestal heights and used methods to quantitatively assess soil loss from soil pedestal data in the available literature.Soil pedestal data at the end of the 5-year period under or overestimated soil loss in the control treatment,with results ranging from 60 to 115%of measured soil loss,depending on the method.It is postulated that phoenix-and endo-pedestals may be a driving factor behind the observed discrepancies.We discuss how future research may provide more insight into dominant processes,and how frequency distributions may be used to select the best methods for estimating soil loss from pedestals.
基金funded by the Natural Science Foundation of China (Grants No. 42171007)。
文摘Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stacks because they have marine notch-like concave sidewalls at their base, and more importantly, the lake is immediately adjacent to the bay, which is exposed to the open sea. However, rock pillars similar in shape and size can also be found at the top of Queshi Mountain, which is only about 300 meters northwest of the lake and about 85 meters above sea level. Therefore, the marine origin of Cape Stone Forest is seriously questioned. In this study, 3D imagery and drone technology were used to collect data in the investigations without direct manual measurements in the water or on the mountain. It shows that the concave sidewalls of the rock pillars in the lake and on the mountains occur at different heights and are exposed to different directions, while a natural sea stack on Mayu Island at the mouth of Shantou Bay has a horizontal notch parallel to the sea level, although the granite rock of the sea stack is the same as that of the lake and the mountains. The eastern side of the island, where the sea stack is located, is exposed to the open sea but blocks large waves for the rock pillars in the lake. Therefore, the origin of Cape Stone Forest cannot be explained by wave-based mechanisms. The only satisfactory explanation that takes into account all the field evidence is that the narrow rock pillars of the lake and mountain were formed by chemical weathering that penetrated closely the spaced joints of the granite rock, and the notch-like concave sidewalls were formed by more effective chemical weathering at the base of the pillars.
文摘Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
基金supported by the National Key R&D Program of China(Grant No.2021YFF0501101)the National Natural Science Foundation of China(Grant Nos.62173137,62303178)the Project of Hunan Provincial Department of Education of China(Grant Nos.23A0426,22B0577).
文摘Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This article introduces a calibration algorithm for the wheel-rail force that leverages graph neural networks and long short-term memory networks.Initially,a comprehensive wheel-rail force detection system for trains was constructed,encompassing two key components:an instrumented wheelset and a ground wheel-rail force measuring system.Subsequently,utilizing this system,two distinct datasets were acquired from the track inspection vehicle:instrumented wheelset data and ground wheel-rail force data,a feedforward neural network was employed to calibrate the instrumented wheelset data,referencing the ground wheel-rail force data.Furthermore,ground wheel-rail force data for the locomotive was obtained for the corresponding road section.This data was then integrated with the calibrated instrumented wheelset data from the track inspection vehicle.Leveraging the GNN-LSTM network,the article establishes a mapping relationship model between the wheel-rail force of the track inspection vehicle and the locomotive wheel-rail force.This model facilitates continuous measurement of locomotive wheel-rail forces across three typical scenarios:straight sections,long and steep downhill sections,and small curve radius sections.
基金funded from the European Union's Horizon 2020 research and innovation programme in the project In2Track3 under grant agreement No.101012456.
文摘Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.
基金supported by the National Magnetic Confinement Fusion Program of China(Nos.2010GB106000,2010GB106001)National Natural Science Foundation of China(Nos.11021565,11275234)
文摘Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM phase have recently been studied on EAST. An edge spatial structure of density fluctuation and its dithering temporal evolution is observed for the first time on the EAST tokamak during the L-H transition phase. A coherent mode usually appears during the ELM-free phase prior to the first ELM on EAST tokamak. The mode frequency gradually decreases as the pedestal evolves. Analysis shows that the coherent mode is in the pedestal region inside the separatrix. In plasma with type-III ELMs, a precursor mode before ELM is usually observed. The frequency of the precursor was initially about 150 kHz and gradually decreased till the next ELM. The mode amplitude increases or shows saturation before ELM. In the plasma with compound ELMs composed of high and low frequency ELMs, the precursor was also observed before the high frequency ELM while the harmonic oscillations with frequencies of 20 kHz, 40 kHz and 60 kHz appear before the low frequency ELM.
基金supported by National Natural Science Foundation of China(Nos.11275233 and 11405206)the National Magnetic Confinement Fusion Science Program of China(No.2013GB112003)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-15-JC01)
文摘The pedestal characteristic is an important basis for high confinement mode (H- mode) research. Because of the finite spatial resolution of Thomson scattering (TS) diagnostic on Experimental Advanced Superconducting Tokamak (EAST), it is necessary to characterize the pedestal with a suitable functional form. Based on simulated and experimental data of EAST, it is shown that the two-line method with a bilinear fitting has better reproducibility of pedestal parameters than hyperbolic tangent (tanh) and modified hyperbolic tangent (mtanh) methods. This method has been applied to EAST type I edge localized mode (ELM) discharges, and the electron pedestal density is found to be proportional to the line-averaged density and the edge pressure gradient is found to be proportional to the pedestal pressure. Furthermore, the ion poloidal gyro-radius has been identified as the suitable parameter to describe the pedestal pressure width.
文摘The pedestal of outdoor furnishings is a facility of courtyard outdoor furnishings. It is an important part of ceremonial furnishings in official buildings. The Qing-style pedestal of outdoor furnishings has unique shapes and ornamentations as well as rich artistic connotation. In addition to having significant artistic value and historical value, it also embodies the user’s aesthetic taste.
文摘A low sidelobe aperture design method of multi-step amplitude quantization with pedestal is proposed, and general analysis and formulas are described. The computation results compared with our previous method "Multi-Step Amplitude Quantization(MSAQ)" on peak side-lobe level, aperture efficiency, normalized input power and sidelobe degradation with tolerance are given. It is shown that, under the same conditions, the method presented in this paper is better than the MSAQ.
基金Base Funding-UIDB/04708/2020 and Programmatic Funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Grant no.2020.00305.CEECIND from the Stimulus of Scientific Employment,Individual Support(CEECIND)-3rd Edition provided by“FCT-Fundação para a Ciência e Tecnologia.”。
文摘An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort.
文摘The dynamic model of a pedestal looseness rotor system is built and the dynamics of the system near the resonance region is analyzed using the KBM method. Then the asymptotic method to study a dynamic system with slow-changing parameters is used to study the starting and braking course of the system. Finally, the analytical results are proved by experiment. The results can be used in the inspecting and fault diagnosis of a rotor system of this type.
基金supported by National Natural Science Foundation of China(Nos.52202510,U21A20167,52272443 and 51975489)Autonomous Research Project of State Key Laboratory(Nos.2020TPL-T10 and 2022TPL-T04)+1 种基金For a scholarship to S.Y.Zhang,under the State Scholarship Fund of the China Scholarship Council(CSC)(No.202007000128)to pursue study in the Central Queensland University as a cotutelle PhD Student.Dr.Qing Wu is the recipient of an Australian Research Council Discovery Early Career Award(Project Number DE210100273)funded by the Australian Government.
文摘The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result.
文摘为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连接松动故障的振动特性敏感性更高,轴系的振动信号对转子故障的振动特性敏感性更高;转子不平衡故障和转子不对中故障表现出不同的频谱特征,转子不平衡故障的频谱特征表现为1倍振动主要频率(amplitude power frequency,APF)幅值增大,且随着故障程度的增加,幅值呈现了逐渐减小的趋势,转子不对中故障的频谱特征表现为产生新的振动特征频率2APF,且随着故障程度的增大,信号幅值逐渐增大;支座连接松动故障表现为频谱图中的主频变为3APF,并出现新的2APF和1/2分数谐波频率.
基金supported by National Key Research and Development Program of China (2020YFA0710902)National Natural Science Foundation of China (12172308)Project of State Key Laboratory of Traction Power (2023TPL-T05).
文摘The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work.
基金China National Railway Group Science and Technology Program(N2022J009)China Academy of Railway Sciences Group Co.,Ltd.Program(2021YJ036).
文摘Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models.