期刊文献+
共找到227,281篇文章
< 1 2 250 >
每页显示 20 50 100
Estimation of surface geometry on combustion characteristics of AP/HTPB propellant under rapid depressurization
1
作者 Kaixuan Chen Zhenwei Ye +1 位作者 Xiaochun Xue Yonggang Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期546-558,共13页
The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressu... The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most. 展开更多
关键词 AP/HTPB propellant BDP model Rapid pressure decay Burning surface geometry
下载PDF
Pressurization System in Low Pressure Tube Hydroforming 被引量:5
2
作者 Chetan Nikhare 《Modeling and Numerical Simulation of Material Science》 2013年第3期71-78,共8页
Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of eco... Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of economic forming process, hydroforming is the manufacturing option which uses a fluid medium to form a component by using high internal pressure. This process gained steep interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole projected part at the same time. Low pressure tube hydroforming considered an inexpensive option for forming these advanced high strength steel. This paper investigates the pressurization system used during the low pressure tube hydroforming cycle. It is observed that the usage of ramp pressure cycle during forming the part from low pressure tube hydroforming results in lesser die holding force. Also, the stress, strain and thickness distribution of the part during low pressure tube hydroforming are critically analysed. 展开更多
关键词 pressurE Low pressurE TUBE HYDROFORMING RAMP pressurE CONSTANT pressurE Advanced High Strength STEELS
下载PDF
Density and Mechanical Properties of Aluminum Lost Foam Casting by Pressurization during Solidification 被引量:5
3
作者 Bokhyun KANG Yongsun KIM +3 位作者 Kiyoung KIM Gueserb CHO Kyeonghwan CHOE Kyongwhoan LEE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第6期828-832,共5页
Porosity is thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring, which results in detrimental effect in mechanical property... Porosity is thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring, which results in detrimental effect in mechanical property. The slow solidification rate promotes the formation of gassing pin holes, and relative weakness of the thermal gradients can cause micro-shrinkage if the outline of the part complicates feeding in the lost foam casting. One of the methods to eliminate the porosity is to apply high pressure to the molten metal like an isostatic forging during solidification. Fundamental experiments were carried out to evaluate the effect of the external pressure on the porosity and mechanical properties of A356.2 alloy bar in the lost foam casting. Solidification time and porosity decreased with increasing the applied pressure during solidification. Applying external pressure was effective in decreasing the porosity and increasing the elongation of the lost foam casting. 展开更多
关键词 Lost foam casting POROSITY pressurization ELONGATION
下载PDF
Simulation of landslide run-out by considering frictional heating and thermal pressurization 被引量:4
4
作者 LIU Wei HE Si-ming HE Zi-lu 《Journal of Mountain Science》 SCIE CSCD 2019年第1期122-137,共16页
Some of the remarkable characteristics of natural landslides, such as surprisingly long travel distances and high velocities, have been attributed to the mechanisms of frictional heating and thermal pressurization. In... Some of the remarkable characteristics of natural landslides, such as surprisingly long travel distances and high velocities, have been attributed to the mechanisms of frictional heating and thermal pressurization. In this work, this mechanism is combined with a depth-averaged model to simulate the long runout of landslides in the condition of deformation. Some important factors that influence frictional heating and thermal pressurization within the shear zone are further considered, including velocity profile and pressurization coefficient. In order to solve the coupled equations, a combined computational method based on the finite volume method and quadratic upwind interpolation for convective kinematics scheme is proposed. Several numerical tests are performed to demonstrate the feasibility of the computational scheme, the influence of thermal pressurization on landslide run-out, and the potential of the model to simulate an actual landslide. 展开更多
关键词 LANDSLIDE Frictional HEATING Thermal pressurization Numerical SIMULATION
下载PDF
Prediction Model of Coal Reservoir Pressure and its Implication for the Law of Coal Reservoir Depressurization 被引量:2
5
作者 YAN Xinlu ZHANG Songhang +5 位作者 TANG Shuheng LI Zhongcheng WANG Kaifeng YI Yongxiang DANG Feng HU Qiuping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期692-703,共12页
The main methods of coalbed methane(CBM)development are drainage and depressurization,and a precise prediction of coal reservoir pressure is thus crucial for the evaluation of reservoir potentials and the formulation ... The main methods of coalbed methane(CBM)development are drainage and depressurization,and a precise prediction of coal reservoir pressure is thus crucial for the evaluation of reservoir potentials and the formulation of reasonable development plans.This work established a new reservoir pressure prediction model based on the material balance equation(MBE)of coal reservoir,which considers the self-regulating effects of coal reservoirs and the dynamic change of equivalent drainage area(EDA).According to the proposed model,the reservoir pressure can be predicted based on reservoir condition data and the actual production data of a single well.Compared with traditional reservoir pressure prediction models which regard EDA as a fixed value,the proposed model can better predict the average pressure of reservoirs.Moreover,orthogonal experiments were designed to evaluate the sensitivity of reservoir parameters on the reservoir pressure prediction results of this proposed model.The results show that the saturation of irreducible water is the most sensitive parameter,followed by Langmuir volume and reservoir porosity,and Langmuir pressure is the least sensitive parameter.In addition,the pressure drop of reservoirs is negatively correlated with the saturation of irreducible water and the Langmuir volume,while it is positively correlated with porosity.This work analyzed the reservoir pressure drop characteristics of the CBM wells in the Shizhuangnan Block of the Qinshui Basin,and the results show that the CBM reservoir depressurization can be divided into three types,i.e.,rapidly drop type,medium-term stability type,and slowly drop type.The drainage features of wells were reasonably interpreted based on the comprehensive analysis of the reservoir depressurization type;the latter was coupled to the corresponding permeability dynamic change characteristics,eventually proving the applicability of the proposed model. 展开更多
关键词 coalbed METHANE pressurE PREDICTION equivalent drainage area influencing factors pressurE DROP types Qinshui Basin
下载PDF
Pressurization control system for low pressure crucible casting 被引量:2
6
作者 Li Qiang Hao Qitang Jie Wanqi 《China Foundry》 SCIE CAS 2011年第4期376-379,共4页
A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium allo... A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium alloy parts with low input cost. This machine with such a system has the virtue of economical and compact, and combines the Fuzzy-PID technology and achieves accuracies of ±2.5 mbar. At present, this machine has been adopted by several users in China for the production of aluminum alloy castings with high property requirements. Furthermore, for magnesium alloy castings, this machine can be used with the gas protect unit. 展开更多
关键词 crucible pressure casting low pressure casting pressurization control system
下载PDF
Theoretical study on the pressurization characteristics of disc-seal single screw pump used in high viscosity oily sludge conveying field 被引量:1
7
作者 Zeng-Li Wang Hou-Wei Shi +3 位作者 Shu-Yu Wang Zong-Ming Wang Mu-Ming Hao Jun Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1361-1370,共10页
The disc-seal single screw pump(DSSP)used in the field of high viscosity oily sludge transport has a huge advantage.However,there is no research on the pressurization characteristics of the DSSP at present,which makes... The disc-seal single screw pump(DSSP)used in the field of high viscosity oily sludge transport has a huge advantage.However,there is no research on the pressurization characteristics of the DSSP at present,which makes its application limited.In view of this,the pressurization process mathematical model of the DSSP was established based on the geometric model of the pump.By using this model,the pressurization characteristics of DSSP and the influence of working parameters on the pressurization process were studied combined with the principle of back-flow pressurization.Analysis results show that the instantaneous pressurization process could be realized mainly depending on the reflux pressurization from the outlet chamber to the pressurization chamber when the screw rotor rotating angle is located at-5°to+5°.The pressure in the pressurization chamber will increase with the increase of working parameters which include inlet pressure,outlet pressure,screw rotation velocity and dynamic viscosity of fluid medium in the area of flow-back pressurization.The screw rotation velocity and the viscosity of the conveying medium have significant effects on the peak pressure in the pressurization chamber,and the peak pressure in the pressurization chamber is proportional to the screw rotation velocity and the dynamic viscosity coefficient of the conveying medium.The proportional coefficient between the peak pressure and the screw rotation velocity is 6.29×10~4.The proportional coefficient between the peak pressure and the dynamic viscosity of the conveying medium is 6.28×10~6. 展开更多
关键词 Disc-seal single screw pump Oily sludge pressurization characteristics Mathematical model Reflux pressurization
下载PDF
Determination of Thermodynamic Parameters of Some Fluorochlorohydrocarbons in Acetone by Gas Chromatography at Low Temperature and Pressurization
8
作者 王丽华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第2期84-92,共9页
1 INTRODUCTIONGas chromatography(GC)has been proved to perform satisfactorily in vapor-liquid equilib-rium measurements and in the study of solution theory.Infinite dilution data are useful notonly for design calculat... 1 INTRODUCTIONGas chromatography(GC)has been proved to perform satisfactorily in vapor-liquid equilib-rium measurements and in the study of solution theory.Infinite dilution data are useful notonly for design calculations but also for theoretical development of correlations.Studies inthis field have been carried on at the Zhejiang University. 展开更多
关键词 low temperature pressurization CHROMATOGRAPHY fluorochlorohydrocarbons THERMODYNAMIC PARAMETERS
下载PDF
Development of a 100 MPa water–gas two-phase fluid pressurization device
9
作者 Shengbin Li Heping Li +1 位作者 Lin Chen Hongbin Zhou 《Acta Geochimica》 EI CAS CSCD 2021年第1期25-31,共7页
This paper introduces a 100 MPa water gas twophase fluid pressurization device.The device can provide 100 MPa gas pressure and 200 MPa liquid pressure for small volume(<20 mL)high-pressure experimental devices.This... This paper introduces a 100 MPa water gas twophase fluid pressurization device.The device can provide 100 MPa gas pressure and 200 MPa liquid pressure for small volume(<20 mL)high-pressure experimental devices.This device can make the pressure control independent of the temperature control without changing the material components of the system.The resolution of this device in adjusting the pressure is±0.2 MPa in the process of boosting and depressurizing.This pressure boosting device generates very little vibration during work and it can be used in experiments with strict requirements on vibration.As a thermodynamic parameter,pressure has a great influence on matter.In the field of experimental geochemistry,pressure is not only an experimental method and an extreme condition but an important physical parameter independent of temperature and chemical composition. 展开更多
关键词 High-precision pressurization device High pressure fluid Gas pressurization Liquid pressurization
下载PDF
Study on an novel composite gel material solving serious lost circulations and pressurization sealing 被引量:1
10
作者 YE Yan YAN Jie-nian +1 位作者 GUO Jian-hua XIE You-xin 《Journal of Energy and Power Engineering》 2007年第1期68-75,共8页
Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured fo... Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured formations where the operator may face total loss with no mud return in the annular. The voids or large fracture encountered in this case are often far too large to be plugged with conventional Lost Circulation Material. This paper will give a detailed introduction on a novel composite gel material usable to control severe losses and pressurization sealing. The plugging mechanics of this new composite gel material, which is different from conventional lost circulation materials, were elaborated as well. In addition, the properties of the new composite gel material such as thermostability, sealing strength and bearing resistance are characterized with specific experimental devices. The experimental results proved that the breakdown pressure of the new plugging reached more than 20MPa, and the maximum degraded temperature can be exceed 130℃. The field application at 4 wells in Puguang gas field, SINOPEC, demonstrated that the new composite gel material solved the serious loss in Ordovician carbonate fractured formation successfully and guaranteed the following completion cement operation smoothly. The composite gel sealing slurries, which was easily prepared on site, gives remarkable properties regarding pumping through drill pipes, adjustment of setting time and excellent sealing strength of the lost zone sealing, additionally, the whole pressurization sealing process was complicated within only ten hours. The on-site results show that the plugging ratio of the new composite gel was reached 100%, and the success rate of sealing operation kept above 80%.Thus the new LCM can guarantee safe drilling jobs and save operation cost more effectively. 展开更多
关键词 Lost Circulation Material (LCM) composite gel sealing strength breakdown pressure pressurized sealing Puguang gas field
下载PDF
A personalized electronic textile for ultrasensitive pressure sensing enabled by biocompatible MXene/ PEDOT:PSS composite 被引量:1
11
作者 Yahua Li Wentao Cao +3 位作者 Zhi Liu Yue Zhang Ziyan Chen Xianhong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期224-238,共15页
Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnos... Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry. 展开更多
关键词 BIOCOMPATIBILITY MXene pressure sensor screen printing TEXTILE
下载PDF
Mechanical Performance of Bio-inspired Bidirectional Corrugated Sandwich Pressure Shell Under External Hydrostatic Pressure 被引量:1
12
作者 ZHANG Yi CHEN Yue +1 位作者 YUN Lai LIANG Xu 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期297-312,共16页
This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cy... This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells. 展开更多
关键词 bio-inspiration bidirectional corrugation sandwich shell external pressure BUCKLING
下载PDF
How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries? 被引量:2
13
作者 Junwu Sang Bin Tang +3 位作者 Yong Qiu Yongzheng Fang Kecheng Pan Zhen Zhou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期93-98,共6页
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si... All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance. 展开更多
关键词 critical current density solid electrolyte solid-state lithium metal batteries stacking pressure
下载PDF
Development of the Separate Air-Supply Type of Pressurization Smoke Control System for the Stairwells of High-Rise Buildings in Korea
14
作者 Jung-Yup Kim Hyun-Joon Shin +2 位作者 Chan-Sol Ahn Ji-Seok Kim Sang-Hyun Joo 《Open Journal of Fluid Dynamics》 2014年第3期251-262,共12页
The pressurization smoke control system has been commonly used as a smoke control system at the emergency stairs of high-rise buildings. However, a higher possibility of overpressure between the lobby and the accommod... The pressurization smoke control system has been commonly used as a smoke control system at the emergency stairs of high-rise buildings. However, a higher possibility of overpressure between the lobby and the accommodation or pressure drop in the lobby could lead to failure in achievement of the purpose of pressurization system, particularly when supplying the leakage and supplementary air flow through one air-supply path at a time. To improve this particular issue, the devise configurations, as well as the different ways to supply the leakage and supplementary air flow through the different flow passages have been proposed. The performance of the trial product was evaluated on the test bed, ultimately providing a safe evacuation environment if high-rise buildings fired. 展开更多
关键词 pressurization System SMOKE Control HIGH-RISE Building EVACUATION STAIRWELL Field EXPERIMENT
下载PDF
Effects of seepage pressure on the mechanical behaviors and microstructure of sandstone 被引量:1
15
作者 Xuewei Liu Juxiang Chen +3 位作者 Bin Liu Sai Wang Quansheng Liu Jin Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2033-2051,共19页
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur... Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone. 展开更多
关键词 Rock mechanics Mechanical property Seepage pressure Numerical simulation MICROCRACKS
下载PDF
Performance of a Score-Stove with a Kerosene Burner and the Effect of Pressurization of the Working Fluid
16
作者 Md Ehsan Manabendra Sarker +1 位作者 Rifath Mahmud Paul H. Riley 《Journal of Power and Energy Engineering》 2015年第4期458-466,共9页
Score-StoveTM a clean-burning cooking stove that also generates electricity was tested using a pressurized kerosene burner. The Score-Stove works on the principle of thermo-acoustics to gen- erate small-scale electric... Score-StoveTM a clean-burning cooking stove that also generates electricity was tested using a pressurized kerosene burner. The Score-Stove works on the principle of thermo-acoustics to gen- erate small-scale electricity. The device having hot-end, cold-end and regenerator acts in a way similar to a stirling cycle generating acoustic power, which is then converted to electricity using a linear actuator. It can supply small power for applications such as LED lighting, mobile phone charging and radios particularly in rural areas without grid electricity as well as improving house- hold air pollution. After assessing the needs of the rural communities through a survey, tea-stalls and small restaurants owners were identified as clients with the most potential of using the stove in Bangladesh. Bangladesh University of Engineering and Technology ((BUET) modified a Score- Stove to use both wood and a pressurized kerosene burner of a design that is widely used for cooking in rural areas of Bangladesh. The design was adapted to meet performance needs such as: heating rate, cooking efficiency, energy distribution, electric power generation, exhaust emissions and time taken to boil water using standardized water boiling tests. Performance was also compared with conventional (non-electrically generating) stoves that use a pressurized kerosene burn- er. The Score-Stove performance was then evaluated while increasing the pressure of the sealed working fluid (air in this case) from atmospheric to about 1.4 bar. The pressurization was found to almost double the power generation. An arrangement for utilizing cooling water waste heat was also devised in order to improve the thermal performance of the stove by 18%. Technical deficiencies are documented and recommendations for improvements and future research in order to obtain wider end-user acceptance are made. 展开更多
关键词 Score-Stove Small-Scale Power Thermo-Acoustics Clean COOKING STOVE KEROSENE BURNER pressurization
下载PDF
Emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure 被引量:1
17
作者 Haining Guan Chunmei Feng +3 位作者 Min Ren Xiaojun Xu Dengyong Liu Xiaoqin Diao 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1271-1278,共8页
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro... Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods. 展开更多
关键词 Soybean protein isolate High hydrostatic pressure EMULSIFICATION ANTIOXIDANT Bitter taste
下载PDF
Driving pressure in mechanical ventilation:A review 被引量:2
18
作者 Syeda Farheen Zaidi Asim Shaikh +2 位作者 Daniyal Aziz Khan Salim Surani Iqbal Ratnani 《World Journal of Critical Care Medicine》 2024年第1期15-27,共13页
Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP lev... Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed. 展开更多
关键词 Driving pressure Acute respiratory distress syndrome MORTALITY Positive end-expiratory pressure Ventilator induced lung injury Mechanical ventilation
下载PDF
Reservoir quality evaluation of the Narimba Formation in Bass Basin,Australia:Implications from petrophysical analysis,sedimentological features,capillary pressure and wetting fluid saturation 被引量:1
19
作者 Wafa Abdul Qader Al-Ojaili Mohamed Ragab Shalaby Wilfried Bauer 《Energy Geoscience》 EI 2024年第1期37-53,共17页
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a... The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir. 展开更多
关键词 Narimba formation PETROPHYSICS Reservoir quality Capillary pressure Wetting fluid saturation
下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:2
20
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部