期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Numerical Analysis of Rolling-sliding Contact with the Frictional Heat in Rail 被引量:3
1
作者 LI Wei WEN Zefeng +1 位作者 JIN Xuesong WU Lei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期41-49,共9页
Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature fiel... Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature field, but few literatures focus on wheel-rail thermal stress caused by frictional heating. However, the wheel-rail creepage is one of important influencing factors of the thermal stress In this paper, a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method. The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration. The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail. The effect of the creepage on the temperature rise, thermal strain, residual stress and residual strain under wheel-rail sliding-rolling contact are investigated. The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact. Both the temperature and thermal strain of rail increase with increasing creepage. The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile. When the creepage is large, the frictional heat has a significant influence on the residual stresses and residual strains of rail. This paper develops a thermo-meehanical coupling model of wheel-rail rolling-sliding contact, and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue. 展开更多
关键词 wheel-rail rolling-sliding contact frictional heating CREEPAGE residual stress/strain thermo-elasto-plastic finite element method
下载PDF
Wheel-rail contact model for railway vehicle-structure interaction applications:development and validation 被引量:1
2
作者 P.A.Montenegro R.Calçada 《Railway Engineering Science》 2023年第3期181-206,共26页
An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rai... An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort. 展开更多
关键词 Vehicle-structure interaction wheel-rail contact Manchester Benchmarks Thread-flange transition Dynamic analysis Model validation
下载PDF
Gaps,challenges and possible solution for prediction of wheel-rail rolling contact fatigue crack initiation
3
作者 Shuyue Zhang Qiyue Liu +4 位作者 Maksym Spiryagin Qing Wu Haohao Ding Zefeng Wen Wenjian Wang 《Railway Engineering Science》 2023年第3期207-232,共26页
The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This p... The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result. 展开更多
关键词 RCF Crack initiation prediction Shakedown map CRITERIA wheel-rail contact
下载PDF
Influence of railway wheel tread damage on wheel-rail impact loads and the durability of wheelsets
4
作者 Michele Maglio Tore Vernersson +2 位作者 Jens C.O.Nielsen Anders Ekberg Elena Kabo 《Railway Engineering Science》 EI 2024年第1期20-35,共16页
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the... Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage. 展开更多
关键词 Wheel tread damage Rolling contact fatigue cluster Field measurements Dynamic vehicle-track interaction wheel-rail impact load Wheelset durability
下载PDF
Research on the influence of flexible wheelset rotation effect on wheel rail contact force
5
作者 Lixia Sun Yuanwu Cai +2 位作者 Di Cheng Xiaoyi Hu Chunyang Zhou 《Railway Sciences》 2024年第3期367-387,共21页
Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different an... Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models. 展开更多
关键词 Flexible wheelset contact points calculation Rotational effects Elastic modes wheel-rail force Papertype Researchpaper
下载PDF
Testing and modelling of transient adhesion phenomena in rolling-sliding contacts
6
作者 Daniel KVARDA Alexander MEIERHOFER Klaus SIX 《Friction》 SCIE EI CAS CSCD 2024年第5期1016-1027,共12页
Transient adhesion effects in rolling–sliding contacts influence all aspects of train–track interaction.This is of high importance specifically when these effects result in critically low adhesion,which poses a risk... Transient adhesion effects in rolling–sliding contacts influence all aspects of train–track interaction.This is of high importance specifically when these effects result in critically low adhesion,which poses a risk to traction and braking of railway vehicles.This study presents a model that can replicate the transient changes of the coefficient of adhesion with tested water and solid particle mix.The experimental data for the model are measured using a commercial ball-on-disc tribometer.The experimental results showed a liquid reservoir in front of the contact area that slowly reduces in size.This observation was used in the modelling approach to divide the calculation into two stages where the reservoir is present and when it disappears.The model was able to reproduce the occurrence of low adhesion region seen in experimental results with different particle concentrations. 展开更多
关键词 coefficient of adhesion TRIBOLOGY transient effects wheel-rail contact
原文传递
An integrated approach for the optimization of wheel-rail contact force measurement systems 被引量:3
7
作者 S.Papini L.Pugi +1 位作者 A.Rindi E.Meli 《Journal of Modern Transportation》 2013年第2期95-102,共8页
A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test cas... A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system. 展开更多
关键词 wheel-rail interaction contact force - Straingauge
下载PDF
Simulation on derailment base on a new wheel-rail contact method
8
作者 王伟 李瑰贤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期1-5,共5页
The simulation package for special research on derailment of high speed vehicle is established.The process of derailment is different from other behaviors of vehicle dynamics because of large lateral displacement of w... The simulation package for special research on derailment of high speed vehicle is established.The process of derailment is different from other behaviors of vehicle dynamics because of large lateral displacement of wheelsets.To get correct results,a new fast algorithm to computing contact force is adopted and the exact geometry analysis is necessary to judge derailment happened.Variation of contact condition and coefficient of friction with speeds are also considered into vehicle-track coupled model.The structure of the package is presented in detail.The results are particular emphasis on investigation influence of maximum track defect,critical vehicle speed and various contact condition on derailment.The simulation can also be used to define the most risk factor leading to derailment. 展开更多
关键词 SIMULATION high speed vehicle vehicle dynamics DERAILMENT wheel-rail contact
下载PDF
Modeling of Energy Processes in Wheel-Rail Contacts Operating under Influence of Periodic Discontinuous Forces
9
作者 Zdzislaw Trzaska 《Journal of Transportation Technologies》 2012年第2期129-143,共15页
In this paper we present new numerical simulation approaches for determining the energy processes under periodic conditions caused by time-discontinuous forces in the wheel-rail contacts. The main advantage of the pre... In this paper we present new numerical simulation approaches for determining the energy processes under periodic conditions caused by time-discontinuous forces in the wheel-rail contacts. The main advantage of the presented method is the total elimination of frequency analysis, which in effect introduces important simplifications in the identification of the effects in the contact. The second important feature is the fact that the method is based on the analysis of appropriate loops on the energy phase plane leading to an easy estimation of the rail strength through the evaluation of the loop’s area. That model based simulation in the applied dynamics relies on advanced methods for model setup, robust and efficient numerical solution techniques and powerful simulation tools for practical applications. Fundamental properties of contact displacements of the rail surface have been considered on the basis of the newly established method. The contact zone between railway wheels and the rail surfaces made of bulk materials is perceived as strong enough to resist the normal (vertical) forces introduced by heavy loads and the dynamic response induced by track and wheel irregularities. The analysis is carried out for a wheel running on an elastic rail rested on sleepers arranged on completely rigid foundation. The equations of displacement motion are established through the application of the Lagrange equations approach. The established model of the wheel-rail contact dynamics has been applied to that same roll plane but with taking into account a nonlinear characteristic of the sleeper with respect to the ground. Attention then is focused completely on the modeling of the energy absorbed by the rail. The applied method employs the energy state variables as time functions leading to determine the susceptibility of a given contact on the strength induced by the rail roll. 展开更多
关键词 wheel-rail contact ENERGY Process PERIODIC DISCONTINUOUS Force One-Period ENERGY ENERGY LOOP
下载PDF
NUMERICAL SIMULATION OF TWO-POINT CONTACT BETWEEN WHEEL AND RAIL 被引量:8
10
作者 Jun Zhang Shouguang Sun Xuesong Jin 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期352-359,共8页
The elastic-plastic contact problem with rolling friction of wheel-rail is solved using the FE parametric quadratic programming method. Thus, the complex elastic-plastic contact problem can be calculated with high acc... The elastic-plastic contact problem with rolling friction of wheel-rail is solved using the FE parametric quadratic programming method. Thus, the complex elastic-plastic contact problem can be calculated with high accuracy and efficiency, while the Hertz's hypothesis and the elastic semi-space assumption are avoided. Based on the ‘one-point' contact calculation of wheel-rail, the computational model of ‘two-point' contact are established and calculated when the wheel flange is close to the rail. In the case of ‘two-point' contact, the changing laws of wheelrail contact are introduced and contact forces in various load cases are carefully analyzed. The main reason of wheel flange wear and rail side wear is found. Lubrication computational model of the wheel flange is constructed. Comparing with the result without lubrication, the contact force between wheel flange and rail decreases, which is beneficial for reducing the wear of wheel-rail. 展开更多
关键词 wheel-rail contact FEM parametric quadratic programming LUBRICATION
下载PDF
Multi-point Contact of the High-speed Vehicle-turnout System Dynamics 被引量:5
11
作者 REN Zunsong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期518-525,共8页
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho... The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system. 展开更多
关键词 line tracing extreme point method multi-point contact high-speed vehicle-turnout system track of contact point on rails wheel-rail force transference
下载PDF
Microstructural Evolution of a Hypoeutectoid Pearlite Steel under Rolling-sliding Contact Loading 被引量:5
12
作者 Qiu-han LI Chi ZHANG +2 位作者 Hu CHEN Hao CHEN Zhi-gang YANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第10期1054-1060,共7页
To study the microstructural evolution of pearlite steel subjected to pure rolling and rolling-sliding contact loading,a hypoeutectoid pearlite steel with composition and microstructure similar to BS11 was designed an... To study the microstructural evolution of pearlite steel subjected to pure rolling and rolling-sliding contact loading,a hypoeutectoid pearlite steel with composition and microstructure similar to BS11 was designed and twindisc tests of this pearlite steel were performed to simulate the wheel/rail system.After a series of twin-disc tests,optical microscope(OM)observation,scanning electron microscope(SEM)observation,X-ray diffraction(XRD),and micro-hardness tests were conducted to characterize the microstructure.Under the pure rolling contact condition,a large amount of reticular cracks emerged within 60μm below the contact surface of the samples after 120 000 revolutions.The largest deformation was approximately 200μm below the contact surface.Under the rolling-sliding contact condition,the nodularization of pearlite within 100μm below the contact surface was obvious.The microstructure and stress-strain distribution of the area within 2mm below the contact surface were investigated.The distribution of micro-hardness under the contact surface varied with contact conditions.Finite element method(FEM)was used to simulate the stress-strain distribution.The results of SEM,FEM,and micro-hardness tests indicated that under the pure rolling contact condition,the maximum plastic strain was approximately 200-400μm below the contact surface.Conversely,under the rolling-sliding contact condition,the maximum plastic strain emerged on the contact surface.Under the pure rolling contact condition,the distribution of micro-hardness was almost identical to that of the equivalent plastic strain.Under the rolling-sliding contact condition,the distribution of micro-hardness was affected by the equivalent plastic strain and tangential stress. 展开更多
关键词 twin-disc test rail micro-hardness plastic strain finite element method hypoeutectoid pearlite steel rolling-sliding contact
原文传递
Research on fatigue evaluation method of high-speed train axle based on axle box acceleration
13
作者 Wenjing Wang Yiming Zeng +1 位作者 Ruiguo Yan Yiyue Chen 《High-Speed Railway》 2023年第4期233-240,共8页
As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the di... As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles. 展开更多
关键词 High-speed train axles Axle-box acceleration Dynamic stress of wheelset axle Fatigue damage wheel-rail contact virtual surface density
下载PDF
A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact 被引量:7
14
作者 Arthur Anyakwo Crinela Pislaru Andrew Ball 《International Journal of Automation and computing》 EI 2012年第3期237-247,共11页
This paper presents a new method for modelling and simulation of the dynamic behaviour of the wheel-rail contact. The proposed dynamic wheel-rail contact model comprises wheel-rail contact geometry, normal contact pro... This paper presents a new method for modelling and simulation of the dynamic behaviour of the wheel-rail contact. The proposed dynamic wheel-rail contact model comprises wheel-rail contact geometry, normal contact problem, tangential contact problem and wheelset dynamic behaviour on the track. This two-degree of freedom model takes into account the lateral displacement of the wheelset and the yaw angle. Single wheel tread rail contact is considered for all simulations and Kalker’s linear theory and heuristic non-linear creep models are employed. The second order differential equations are reduced to first order and the forward velocity of the wheelset is increased until the wheelset critical velocity is reached. This approach does not require solving mathematical equations in order to estimate the critical velocity of the dynamic wheel-rail contact model. The mathematical model is implemented in Matlab using numerical differentiation method. The simulated results compare well with the estimated results based on classical theory related to the dynamic behaviour of rail-wheel contact so the model is validated. 展开更多
关键词 MODELLING SIMULATION condition monitoring dynamic behaviour wheel-rail contact
原文传递
Influence of white etching layer on rolling contact behavior at wheel-rail interface 被引量:5
15
作者 Qinglin LIAN Guanyu DENG +3 位作者 Hongtao ZHU Huijun LI Xi WANG Zhiming LIU 《Friction》 SCIE CSCD 2020年第6期1178-1196,共19页
The existence of narrow and brittle white etching layers(WELs)on the rail surface is often linked with the formation of rail defects such as squats and studs,which play the key roles in rail surface degradation and tr... The existence of narrow and brittle white etching layers(WELs)on the rail surface is often linked with the formation of rail defects such as squats and studs,which play the key roles in rail surface degradation and tribological performance.In the present study,a systematic investigation on stress/strain distribution and fatigue life of the WEL during wheel-rail rolling contact was conducted based on a numerical model considering the realistic wheel geometry.This is the first study considering the influence of rail materials,loading pressure,frictional condition,WEL geometry(a/b),and slip ratio(Sr)in the practical service conditions at the same time.The results revealed much higher residual stress in WEL than in rail matrix.Stress changes along the rail depth matched with the previously reported microstructure evolutions.The current work revealed that the maximum difference in contact stress between the wheel passages of rail matrix and the WEL region(noted as stress variation)rises with the increase of loading pressure,the value of a/b,and Sr;but drops with the friction coefficient(μ).In addition,a critical length–depth ratio of 5 for a/b has been found.The fatigue parameter,FP,of the WEL decreased quickly with the length–depth ratio when it was less than 5 and then increased slightly when it was larger than 5.This study also revealed that the fatigue life of the WEL was reduced for high strength head hardened(HH)rail compared with standard carbon(SC)rail. 展开更多
关键词 wheel-rail contact white etching layer rolling contact fatigue finite element simulation
原文传递
Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion 被引量:9
16
作者 Wei Gong Zhihui Zhu +3 位作者 Yu Liu Ruitao Liu Yongjiu Tang Lizhong Jiang 《Railway Engineering Science》 2020年第2期184-198,共15页
To explore the influence of spatially varying ground motion on the dynamic behavior of a train passing through a three-tower cable-stayed bridge,a 3D train–track–bridge coupled model is established for accurately si... To explore the influence of spatially varying ground motion on the dynamic behavior of a train passing through a three-tower cable-stayed bridge,a 3D train–track–bridge coupled model is established for accurately simulating the train–bridge interaction under earthquake excitation,which is made up of a vehicle model built by multi-body dynamics,a track–bridge finite element model,and a 3D rolling wheel–rail contact model.A conditional simulation method,which takes into consideration the wave passage effect,incoherence effect,and site-response effect,is adopted to simulate the spatially varying ground motion under different soil conditions.The multi-time-step method previously proposed by the authors is also adopted to improve computational efficiency.The dynamic responses of the train running on a three-tower cablestayed bridge are calculated with differing earthquake excitations and train speeds.The results indicate that(1)the earthquake excitation significantly increases the responses of the train–bridge system,but at a design speed,all the running safety indices meet the code requirements;(2)the incoherence and site-response effects should also be considered in the seismic analysis for long-span bridges though there is no fixed pattern for determining their influences;(3)different train speeds that vary the vibration characteristics of the train–bridge system affect the vibration frequencies of the car body and bridge. 展开更多
关键词 EARTHQUAKE Spatially varying ground motion Long-span bridges Nonlinear wheel-rail contact Running safety
下载PDF
Dynamic performance of six-axle locomotive subjected to asymmetric brake shoe forces 被引量:2
17
作者 LIU Peng-fei ZHANG Kai-long CAO Yun-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2776-2791,共16页
To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomo... To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition. 展开更多
关键词 LOCOMOTIVE brake shoe force dynamic performance asymmetric braking wheel-rail contact
下载PDF
Simulation of wheel and rail profile wear:a review of numerical models 被引量:3
18
作者 N.Bosso M.Magelli N.Zampieri 《Railway Engineering Science》 2022年第4期403-436,共34页
The development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes.This work surveys th... The development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes.This work surveys the main numerical models in the literature for the evaluation of the uniform wear of wheel and rail profiles.The standard structure of these tools includes a multibody simulation of the wheel-track coupled dynamics and a wear module implementing an experimental wear law.Therefore,the models are classified according to the strategy adopted for the worn profile update,ranging from models performing a single computation to models based on an online communication between the dynamic and wear modules.Nevertheless,the most common strategy nowadays relies on an iteration of dynamic simulations in which the profiles are left unchanged,with co-simulation techniques often adopted to increase the computational performances.Work is still needed to improve the accuracy of the current models.New experimental campaigns should be carried out to obtain refined wear coefficients and models,while strategies for the evaluation of both longitudinal and transversal wear,also considering the effects of tread braking,should be implemented to obtain accurate damage models. 展开更多
关键词 WEAR Wheel and rail profiles wheel-rail contact Railway vehicle dynamics Multibody simulation CO-SIMULATION
下载PDF
Numerical simulation of wheel wear evolution for heavy haul railway 被引量:13
19
作者 王璞 高亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期196-207,共12页
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati... The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance. 展开更多
关键词 heavy haul railway wheel wear evolution wheel-rail rolling contact vehicle-track coupling dynamics profile updating
下载PDF
Effects of solid friction modifier on friction and rolling contact fatigue damage of wheel-rail surfaces 被引量:2
20
作者 Jingdong SONG Lubing SHI +6 位作者 Haohao DING Radovan GALAS Milan OMASTA Wenjian WANG Jun GUO Qiyue LIU Martin HARTL 《Friction》 SCIE EI CAS CSCD 2022年第4期597-607,共11页
In railway network,friction is an important factor to consider in terms of the service behaviors of wheel-rail system.The objective of this study was to investigate the effect of a solid friction modifier(FM)in a rail... In railway network,friction is an important factor to consider in terms of the service behaviors of wheel-rail system.The objective of this study was to investigate the effect of a solid friction modifier(FM)in a railway environment.This was achieved by studying the friction,wear,and rolling contact fatigue(RCF)damage on the wheel-rail materials at different slip ratios.The results showed that when a solid FM was applied,the friction coefficient decreased.After the solid FM was separated from the wheel-rail interface,the friction coefficient gradually increased to its original level.With the application of the solid FM,the wear rates of the wheel-rail decreased.In addition,the thickness and hardness of the plastic deformation layers of the wheel-rail materials were reduced.The worn surfaces of the wheel-rail were dominated by pits and RCF cracks.Without the FM,RCF cracks ranged from 84 to 120μm,and subsurface cracks were generated.However,with the FM,RCF cracks ranged from 17 to 97μm and no subsurface cracks were generated.These findings indicate possible methods of improving the performance of railway rolling stock by managing friction,and reducing wear and permanent RCF damage affecting both the wheels and rails. 展开更多
关键词 wheel-rail solid friction modifier(FM) FRICTION WEAR rolling contact fatigue(RCF)damage
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部