Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a no...Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a nonlinear observer/filter structure to compensate for uncertainties in corresponding friction parameters associated with the turntable system. Moreover, in the second scheme, adjustable gains are introduced into the dual nonlin- ear filters and they can be tuned to improve the position tracking performance. In both cases, a Lyapunov-like argument is provided for the global asymptotic stability of the closed-loop system. Simulation results demonstrate the effectiveness of the proposed schemes.展开更多
In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the...In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.展开更多
This paper is concerned with the H∞ fault detection for continuous-time linear switched systems with its application to turntable systems.The solvability condition for a desired filter is established based on the pro...This paper is concerned with the H∞ fault detection for continuous-time linear switched systems with its application to turntable systems.The solvability condition for a desired filter is established based on the proposed sufficient condition.Based on the double channel scheme of the turntable control system,the turntable system can be modeled as a switched system.Finally,by taking the turntable system as a numerical example,the effectiveness of the proposed theory is well validated.展开更多
The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which la...The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.展开更多
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure th...In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.展开更多
With photoelectric tracking system as the research object,based on the theorem of moment of momentum and Euler dynamic equation,Nonlinear biaxial coupling dynamic model of tracking turntable is established.Effects of ...With photoelectric tracking system as the research object,based on the theorem of moment of momentum and Euler dynamic equation,Nonlinear biaxial coupling dynamic model of tracking turntable is established.Effects of moment of inertia coupling,speed coupling and the dynamic coupling between tracking turntable shafts were studied,the analytical relation between them was given in theory.Verify the change trend of theoretical model.And it provides the theory reference and model base,for the future design of the high precision tracking controller And control parameter selection and optimization.In the end,specific measures are made for structure optimization.展开更多
In order to improve the convective heat transfer relating to an eddy current retarder,the finite element model has been used to assess the performances of different possible designs.In particular,assuming the steady r...In order to improve the convective heat transfer relating to an eddy current retarder,the finite element model has been used to assess the performances of different possible designs.In particular,assuming the steady running state of retarder as the working condition,flow and temperature fields have been obtained for the rotor.The influence of airflow path on heat dissipation has been analysed,and the influence of the temperature field distribution on the performance of retarder has been discussed accordingly.The results show that when the steady running state of the turntable is considered,the maximum temperature is lower,the level of turbulence flow is mitigated,and the temperature distribution becomes more regular.These factors contribute to improve the heat dissipation ability of the retarder.展开更多
Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to resear...Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.展开更多
As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions ...As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.展开更多
Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome t...Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.展开更多
The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, ha...The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, has ana- lyzed its vertical load, horizontal load and torsional load, and has established a mechanical model for the symmet- rical structure of the box girder locomotive turntable under the action of positive and negative symmetric vertical loads. Furthermore, it has also demonstrated the safe and reliable structural performance of this type of locomotive turntable on the basis of the practical example of a 35 m box girder locomotive turntable.展开更多
Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesio...Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.展开更多
Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This a...Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This article introduces a calibration algorithm for the wheel-rail force that leverages graph neural networks and long short-term memory networks.Initially,a comprehensive wheel-rail force detection system for trains was constructed,encompassing two key components:an instrumented wheelset and a ground wheel-rail force measuring system.Subsequently,utilizing this system,two distinct datasets were acquired from the track inspection vehicle:instrumented wheelset data and ground wheel-rail force data,a feedforward neural network was employed to calibrate the instrumented wheelset data,referencing the ground wheel-rail force data.Furthermore,ground wheel-rail force data for the locomotive was obtained for the corresponding road section.This data was then integrated with the calibrated instrumented wheelset data from the track inspection vehicle.Leveraging the GNN-LSTM network,the article establishes a mapping relationship model between the wheel-rail force of the track inspection vehicle and the locomotive wheel-rail force.This model facilitates continuous measurement of locomotive wheel-rail forces across three typical scenarios:straight sections,long and steep downhill sections,and small curve radius sections.展开更多
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the...Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.展开更多
An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rai...An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort.展开更多
Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-fr...Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-frame radial bogie are developed in China. In order to analyze and compare dynamic interactions of the two newly developed heavy-haul freight bogies, we establish a vehi- cle-track coupling dynamic model and use numerical calculation methods for computer simulation. The dynamic performances of the two bogies are simulated separately at various conditions. The results show that at the dipped joint and straight line running conditions, the wheel-rail dynamic interactions of both bogies are basically the same, but at the curve negotiation condition, the wear and the lateral force of the side-frame cross-bracing bogie are much higher than that of the sub-frame radial bogie, and the advantages become more obvious when the curve radius is smaller. The results also indicate that the sub- frame radial bogie has better low-wheel-rail interaction characteristics.展开更多
A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test cas...A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.展开更多
In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, th...In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, the paper analyzes the influence of vertical section parameters, including vertical section slope and vertical curve radius, on wheel-rail dynamics interaction and the acting region of wheel-rail vibration. In addition, the characteristics of wheel- rail vibration of the vertical section under different velocities are investigated. The results show that the variation of wheel load is not sensitive to the vertical section slope but is greatly affected by the vertical curve radius. It was also observed that the smaller the vertical curve radius is, the more severe the interaction between the wheel and rail be- comes. Furthermore, the acting region of wheel-rail vibration expands with the vertical curve radius increasing. On another note, it is necessary to match the slope and vertical curve radius reasonably, on account of the influence of operation speed on the characteristics of wheel-rail vibration. This is especially important at the design stage of vertical sec- tions for lines of different grades.展开更多
文摘Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a nonlinear observer/filter structure to compensate for uncertainties in corresponding friction parameters associated with the turntable system. Moreover, in the second scheme, adjustable gains are introduced into the dual nonlin- ear filters and they can be tuned to improve the position tracking performance. In both cases, a Lyapunov-like argument is provided for the global asymptotic stability of the closed-loop system. Simulation results demonstrate the effectiveness of the proposed schemes.
基金Projects(51575010,51575009)supported by the National Natural Science Foundations of ChinaProject(Z1511000003150138)supported by Beijing Nova Program,China
文摘In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.
基金supported by the National Natural Science Foundation of China(60804002)the Natural Science Foundation of Heilongjiang Province of China(QC2009C58)+1 种基金the Program for New Century Excellent Talents in Universitythe Chinese National Post-doctor Science Foundation(20090460892)
文摘This paper is concerned with the H∞ fault detection for continuous-time linear switched systems with its application to turntable systems.The solvability condition for a desired filter is established based on the proposed sufficient condition.Based on the double channel scheme of the turntable control system,the turntable system can be modeled as a switched system.Finally,by taking the turntable system as a numerical example,the effectiveness of the proposed theory is well validated.
文摘The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
文摘In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.
文摘With photoelectric tracking system as the research object,based on the theorem of moment of momentum and Euler dynamic equation,Nonlinear biaxial coupling dynamic model of tracking turntable is established.Effects of moment of inertia coupling,speed coupling and the dynamic coupling between tracking turntable shafts were studied,the analytical relation between them was given in theory.Verify the change trend of theoretical model.And it provides the theory reference and model base,for the future design of the high precision tracking controller And control parameter selection and optimization.In the end,specific measures are made for structure optimization.
基金supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1603004).
文摘In order to improve the convective heat transfer relating to an eddy current retarder,the finite element model has been used to assess the performances of different possible designs.In particular,assuming the steady running state of retarder as the working condition,flow and temperature fields have been obtained for the rotor.The influence of airflow path on heat dissipation has been analysed,and the influence of the temperature field distribution on the performance of retarder has been discussed accordingly.The results show that when the steady running state of the turntable is considered,the maximum temperature is lower,the level of turbulence flow is mitigated,and the temperature distribution becomes more regular.These factors contribute to improve the heat dissipation ability of the retarder.
文摘Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.
基金co-supported by the Natural Science Foundation of China(No.61833016)the Shaanxi Out-standing Youth Science Foundation(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038).
文摘As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.
基金State Administration of Science,Technology and Industry for the National Defense(No.JSJL2014206B001)。
文摘Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.
文摘The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, has ana- lyzed its vertical load, horizontal load and torsional load, and has established a mechanical model for the symmet- rical structure of the box girder locomotive turntable under the action of positive and negative symmetric vertical loads. Furthermore, it has also demonstrated the safe and reliable structural performance of this type of locomotive turntable on the basis of the practical example of a 35 m box girder locomotive turntable.
文摘Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
基金supported by the National Key R&D Program of China(Grant No.2021YFF0501101)the National Natural Science Foundation of China(Grant Nos.62173137,62303178)the Project of Hunan Provincial Department of Education of China(Grant Nos.23A0426,22B0577).
文摘Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This article introduces a calibration algorithm for the wheel-rail force that leverages graph neural networks and long short-term memory networks.Initially,a comprehensive wheel-rail force detection system for trains was constructed,encompassing two key components:an instrumented wheelset and a ground wheel-rail force measuring system.Subsequently,utilizing this system,two distinct datasets were acquired from the track inspection vehicle:instrumented wheelset data and ground wheel-rail force data,a feedforward neural network was employed to calibrate the instrumented wheelset data,referencing the ground wheel-rail force data.Furthermore,ground wheel-rail force data for the locomotive was obtained for the corresponding road section.This data was then integrated with the calibrated instrumented wheelset data from the track inspection vehicle.Leveraging the GNN-LSTM network,the article establishes a mapping relationship model between the wheel-rail force of the track inspection vehicle and the locomotive wheel-rail force.This model facilitates continuous measurement of locomotive wheel-rail forces across three typical scenarios:straight sections,long and steep downhill sections,and small curve radius sections.
基金funded from the European Union's Horizon 2020 research and innovation programme in the project In2Track3 under grant agreement No.101012456.
文摘Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.
基金Base Funding-UIDB/04708/2020 and Programmatic Funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Grant no.2020.00305.CEECIND from the Stimulus of Scientific Employment,Individual Support(CEECIND)-3rd Edition provided by“FCT-Fundação para a Ciência e Tecnologia.”。
文摘An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort.
基金supported by the National Natural Science Foundation of China (No. 50975238)
文摘Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-frame radial bogie are developed in China. In order to analyze and compare dynamic interactions of the two newly developed heavy-haul freight bogies, we establish a vehi- cle-track coupling dynamic model and use numerical calculation methods for computer simulation. The dynamic performances of the two bogies are simulated separately at various conditions. The results show that at the dipped joint and straight line running conditions, the wheel-rail dynamic interactions of both bogies are basically the same, but at the curve negotiation condition, the wear and the lateral force of the side-frame cross-bracing bogie are much higher than that of the sub-frame radial bogie, and the advantages become more obvious when the curve radius is smaller. The results also indicate that the sub- frame radial bogie has better low-wheel-rail interaction characteristics.
文摘A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.
基金support and motivation provided by the National Natural Science Foundation of China (No. 51075340)the Fok YingTong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 121075)the Program for Innovation Research Team in University in China (No. IRT1178)
文摘In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, the paper analyzes the influence of vertical section parameters, including vertical section slope and vertical curve radius, on wheel-rail dynamics interaction and the acting region of wheel-rail vibration. In addition, the characteristics of wheel- rail vibration of the vertical section under different velocities are investigated. The results show that the variation of wheel load is not sensitive to the vertical section slope but is greatly affected by the vertical curve radius. It was also observed that the smaller the vertical curve radius is, the more severe the interaction between the wheel and rail be- comes. Furthermore, the acting region of wheel-rail vibration expands with the vertical curve radius increasing. On another note, it is necessary to match the slope and vertical curve radius reasonably, on account of the influence of operation speed on the characteristics of wheel-rail vibration. This is especially important at the design stage of vertical sec- tions for lines of different grades.