期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach
1
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
2
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Mathematical modeling and simulation application for a wheeled mobile robot applied on pipe welding
3
作者 薛杨 黄军芬 +1 位作者 黄继强 张翔 《China Welding》 EI CAS 2015年第3期52-57,共6页
A geometric model was built to represent the position relation of a wheeled mobile robot relative to a pipe. The relationship between the deviation of falling off for the robot and the curvature of the pipe was formul... A geometric model was built to represent the position relation of a wheeled mobile robot relative to a pipe. The relationship between the deviation of falling off for the robot and the curvature of the pipe was formulated quantitatively. Based on the relationship, a mathematical model was derived and a fuzzy control algorithm for the robot was developed. Simulations were carried out to confirm the dynamic index and the validity of the mathematical model of the fuzzy control algorithm for seam tracking of pipe welding. Experiments for pipe welding with the mobile robot were also carried out to verify the algorithm, and the results showed that the seam has a good quality with a preferable appearance of weld. 展开更多
关键词 wheeled mobile robot pipe welding deviation of falling off
下载PDF
Data-driven iterative learning trajectory tracking control for wheeled mobile robot under constraint of velocity saturation
4
作者 Xiaodong Bu Xisheng Dai Rui Hou 《IET Cyber-Systems and Robotics》 EI 2023年第2期37-47,共11页
Considering the wheeled mobile robot(WMR)tracking problem with velocity saturation,we developed a data‐driven iterative learning double loop control method with constraints.First,the authors designed an outer loop co... Considering the wheeled mobile robot(WMR)tracking problem with velocity saturation,we developed a data‐driven iterative learning double loop control method with constraints.First,the authors designed an outer loop controller to provide virtual velocity for the inner loop according to the position and pose tracking error of the WMR kinematic model.Second,the authors employed dynamic linearisation to transform the dynamic model into an online data‐driven model along the iterative domain.Based on the measured input and output data of the dynamic model,the authors identified the parameters of the inner loop controller.The authors considered the velocity saturation constraints;we adjusted the output velocity of the WMR online,providing effective solutions to the problem of velocity saltation and the saturation constraint in the tracking process.Notably,the inner loop controller only uses the output data and input of the dynamic model,which not only enables the reliable control of WMR trajectory tracking,but also avoids the influence of inaccurate model identification processes on the tracking performance.The authors analysed the algorithm's convergence in theory,and the results show that the tracking errors of position,angle and velocity can converge to zero in the iterative domain.Finally,the authors used a simulation to demonstrate the effectiveness of the algorithm. 展开更多
关键词 data-driven control dynamic model iterative learning control trajectory tracking velocity saturation wheeled mobile robot
原文传递
Research on point stabilization of a wheeled mobile robot using fuzzy control optimized by GA 被引量:2
5
作者 CAO Zheng-cai ZHAO Ying-tao FU Yi-li 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2011年第5期108-113,共6页
A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is... A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is employed to regulate the robot based on a kinematic nonlinear state feedback control law. Herein, the fuzzy strategy is composed of two velocity control laws which are used to adjust the speed and angular velocity, respectively. Subsequently, genetic algorithm (GA) is applied to optimize the controller parameters. Through the self-optimization, a group of optimum parameters is gotten. Simulation results are presented to show the effectiveness of the control strategy. 展开更多
关键词 wheeled mobile robot point stabilization fuzzy control genetic algorithm
原文传递
Kinematics Modeling of an Omnidirectional Autonomous Mobile Robot with Castor Wheels
6
作者 彭忆强 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期348-354,共7页
The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify ... The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify the consistency between the actuated inverse solution and the sensed forward solution. Analysis results show that the WMR possesses 3 degrees of freedom, and its motion trajectory is a straight line. The "pushing" and "pulling" motion patterns of the WMR can be generated by using different wheel orientations. It can be used in the places where the space is limited. 展开更多
关键词 wheeled mobile robot Omnidirectional wheeled mobile robot KINEMATICS
下载PDF
Novel Algorithm for Mobile Robot Path Planning in Constrained Environment
7
作者 Aisha Muhammad Mohammed A.H.Ali +6 位作者 Sherzod Turaev Ibrahim Haruna Shanono Fadhl Hujainah Mohd Nashrul Mohd Zubir Muhammad Khairi Faiz Erma Rahayu Mohd Faizal Rawad Abdulghafor 《Computers, Materials & Continua》 SCIE EI 2022年第5期2697-2719,共23页
This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraint... This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraints. This approach gives the possibility to find the path for a wheelmobile robot considering some constraints during the robot movement inboth known and unknown environments. The feasible path is determinedbetween the start and goal positions by generating wave of points in alldirection towards the goal point with adhering to constraints. In simulation,the proposed method has been tested in several working environments withdifferent degrees of complexity. The results demonstrated that the proposedmethod is able to generate efficiently an optimal collision-free path. Moreover,the performance of the proposed method was compared with the A-star andlaser simulator (LS) algorithms in terms of path length, computational timeand path smoothness. The results revealed that the proposed method hasshortest path length, less computational time and the best smooth path. Asan average, GLS is faster than A∗ and LS by 7.8 and 5.5 times, respectivelyand presents a path shorter than A∗ and LS by 1.2 and 1.5 times. In orderto verify the performance of the developed method in dealing with constraints, an experimental study was carried out using a Wheeled Mobile Robot(WMR) platform in labs and roads. The experimental work investigates acomplete autonomous WMR path planning in the lab and road environmentsusing a live video streaming. Local maps were built using data from a live video streaming with real-time image processing to detect segments of theanalogous-road in lab or real-road environments. The study shows that theproposed method is able to generate shortest path and best smooth trajectoryfrom start to goal points in comparison with laser simulator. 展开更多
关键词 Path planning generalized laser simulator wheeled mobile robot global path panning local path planning
下载PDF
Optimum Design of Stair-Climbing Robots Using Taguchi Method
8
作者 A.Arunkumar S.Ramabalan D.Elayaraja 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1229-1244,共16页
Environmental issues like pollution are major threats to human health.Many systems are developed to reduce pollution.In this paper,an optimal mobile robot design to reduce pollution in Green supply chain management sy... Environmental issues like pollution are major threats to human health.Many systems are developed to reduce pollution.In this paper,an optimal mobile robot design to reduce pollution in Green supply chain management system.Green supply chain management involves as similating environmentally and eco-nomically feasible solutions into the supply chain life-cycle.Smartness,advanced technologies,and advanced networks are becoming pillars of a sustainable supply chain management system.At the same time,there is much change happening in the logistics industry.They are moving towards a new logistics model.In the new model,robotic logistics has a vital role.The reasons for this change are the rapid growth of the e-commerce business and the shortage of workers.The advantages of using robotic logistics are reduction in human errors,faster delivery speed,better customer satisfaction,more safety for workers,and high workforce adaptability.A robot with rocker-bogie suspension is a six-wheeled mobile platform that has a distinctive potential to keep all wheels on the ground continuously.It has been designed to traverse rough and uneven terrain by distributing the load over its wheels equally.However,there is a limitation to achieving high-speed mobility against vertical barriers.In this research,an optimal design of product delivery wheeled robots for a sustainable supply chain system is proposed to ensure higher adaptability and maximum stability during climbing staircases.The design parameters of the proposed robot are optimized using Taguchi Method.The aim is to get a smooth trajectory of the robot’s center-of-mass.The proposed approach realizes a robot with much-improved stability which can climb over heights more than the size of the wheel(i.e.,3 times the radius of wheels).The results reveal that the modified rocker-bogie system not only increases the stair-climbing capability but also thwarts instability due to overturning of a wheel of the robot. 展开更多
关键词 Green supply chain management robotic logistics stair-climbing wheeled mobile robot optimum design rocker-bogie mechanism taguchi method
下载PDF
Neural Network Based Terminal Sliding Mode Control for WMRs Affected by an Augmented Ground Friction With Slippage Effect 被引量:8
9
作者 Ming Yue Linjiu Wang Teng Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期498-506,共9页
Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neura... Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment. 展开更多
关键词 Ground friction radial basis function(RBF) neural network(NN) slippage effect terminal sliding mode control(TSMC) wheeled mobile robot(WMR)
下载PDF
Motion Coordination for a Class of Multi-Agents via Networked Predictive Control 被引量:2
10
作者 ZHANG Tian-Yong YOU Bo LIU Guo-Ping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第3期622-639,共18页
The motion coordination formation control problem for a class of non-linear system is considered in this paper,where networked induced time-delays exist in the feedback channel of each agent and in communication chann... The motion coordination formation control problem for a class of non-linear system is considered in this paper,where networked induced time-delays exist in the feedback channel of each agent and in communication channels between agents.As a foundation work,a coordination formation controller in discrete-time domain that without time-delay is provided firstly.Based on the above results,a motion coordination predictive formation control strategy as well as its detail implementation processes are proposed to actively compensate the time-delays.Stability analysis and simulation results are provided to demonstrate the feasibility and effectiveness of the proposed predictive strategy. 展开更多
关键词 Formation control motion coordination networked predictive control TIME-DELAYS wheeled mobile robots
原文传递
Robust Exponential Stabilization of Nonholonomic Chained Systems with Unknown Parameters
11
作者 Zhen-ying LIANG Chao-li WANG +1 位作者 Ze-hua DO Zhi-rui LIANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第3期799-812,共14页
The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presen... The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presented for a type of nonholonomic mobile robots. Then, a new time-varying feedback controller is proposed to stabilize the uncertain system exponentially with the help of the stabilization theorems, state-scaling and switching techniques. The exponential stability of the closed-loop system is rigorously proved. Simulation results are given to demonstrate the effectiveness of the proposed strategies. 展开更多
关键词 Nonholonomic stabilization uncertain chained system visual feedback wheeled mobile robot
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部