Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning probl...Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.展开更多
A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor dr...A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between "Velocity-driven Mode" and "Torquedriven Mode". To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines.展开更多
This paper proposes two novel rescue robots,including a cutter robot and a jack robot,which are aimed to contribute to rescue activities such as to cut through obstacles and to jack up debris in dangerous sites and na...This paper proposes two novel rescue robots,including a cutter robot and a jack robot,which are aimed to contribute to rescue activities such as to cut through obstacles and to jack up debris in dangerous sites and narrow spaces,where a rescue team can not work or approach.Firstly,a multilinked tracked rescue robot platform composed of connected crawler vehicles is developed,which has high mobility on irregular terrain and ability to move into narrow collapsed structures.Then,the cutter robot and jack robot are designed on the basis of rescue robot platform equipped with a cutter or a jack mechanism and corresponding manipulators in the front segment.The cutter refitted by an angle grinder is able to cut through 10 mm diameter steel bars.The electric jack mechanism designed based on multiple layers screw sleeves structure can lift up 300 kg load from 70 mm to 400 mm.Experimental results validate the capability of the two rescue robots.展开更多
A portable shape-shifting mobile robot system named as Amoeba Ⅱ(A-Ⅱ) is developed for the urban search and rescue application. It is designed with three degrees of freedom and two tracked drive systems. This robot...A portable shape-shifting mobile robot system named as Amoeba Ⅱ(A-Ⅱ) is developed for the urban search and rescue application. It is designed with three degrees of freedom and two tracked drive systems. This robot consists of two modular mobile units and a joint unit. The mobile unit is a tracked mechanism to enforce the propulsion of robot. And the joint unit can transform the robot shape to get high environment adaptation. A-Ⅱ robot can not only adapt to the environment but also change its body shape according to the locus space. It behaves two work states including the linear state (named as I state) and the parallel state (named as Ⅱ state). With the linear state the robot can climb upstairs and go through narrow space such as the pipe, cave, etc. The parallel state enables the robot with high mobility on rough ground. Also, the joint unit can propel the robot to roll in sidewise direction. Two modular A-Ⅱ robots can be connected through jointing common interfaces on the joint unit to compose a stronger shape-shifting robot, which can transform the body into four wheels-driven vehicle. The experimental results validate the adaptation and mobility of A-Ⅱ robot.展开更多
After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performanc...After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performance and explosion-proof capability. For this type of environment,we designed a mobile platform for a rocker-type coal mine rescue robot with four independent drive wheels.The composition and operational principles of the mobile platform are introduced,we discuss the flameproof design of the rocker assembly,as well as the operational principles and mechanical structure of the bevel gear differential and the main parameters are provided.Motion simulation of the differential function and condition of the robot running on virtual,uneven terrain is carried out with ADAMS.The simulation results show that the differential device can maintain the main body of the robot at an average angle between two rockers.The robot model has good operating performance.Experiments on terrain adaptability and surmounting obstacle performance of the robot prototype have been carried out.The results indicate that the prototype has good terrain adaptability and strong obstacle-surmounting performance.展开更多
An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module ...An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments.展开更多
The localization for mine rescue robot in unknown space of coal mine emer- gency was researched,basing on the requirement of mine rescue robot localization which enters the scene of the coal mine accident,unknown circ...The localization for mine rescue robot in unknown space of coal mine emer- gency was researched,basing on the requirement of mine rescue robot localization which enters the scene of the coal mine accident,unknown circumstance,the unstructured, non-Gaussian and nonlinear work-space for robot works.The localization using particle filter was proposed to which is applied in mine rescue robot in unknown under-ground space.Meanwhile,focusing on severe particle sample degeneracy in the primary particle filter,an improved particle filter was proposed to reinforce the stability of particle filter.Be- ing compared with localization using extended Kalman filter through simulation experiment the localization using particle filter is proved to have more locating accuracy in unknown underground space and better computational real-time ability,which solves the pre-local- ization problem of robot underground.展开更多
By introdming a small-caliber deep well rescue robot, a hold-hug pattern rescue mechanism was brought forward. In order to reduce the volmne, the trader-well rescue imclmnism is modularizing designed. At the same tira...By introdming a small-caliber deep well rescue robot, a hold-hug pattern rescue mechanism was brought forward. In order to reduce the volmne, the trader-well rescue imclmnism is modularizing designed. At the same tirae, the audio and video systyems, the illumination system and the ventilation system are expatiated. The rescuing robot can rescue the falling person in the deep well, it can save much manateral resources and time. It's really an ideal rescue device for the small-caliber fall.展开更多
A wireless communication method with dynamic adding nodes for Underground Search and Rescue robot is proposed: fix the address of the controller, add repeater nodes into the net dynamically, and shift the address of ...A wireless communication method with dynamic adding nodes for Underground Search and Rescue robot is proposed: fix the address of the controller, add repeater nodes into the net dynamically, and shift the address of the mobile terminal. With this method, the Search and Rescue robot can reach the deeper place of a mine to help rescue and keep in touch with the controller through wireless communication in a single channel, even in a complex laneway where radio wave cannot go through the thick wall. The collision in the process of the two-way multi-hop communication in the single channel will also be resolved by the communication direction priority and response signal mechanism, to enhance the reliability of communication. Finally, a sample is designed and an experiment is conducted to verify the efficiency of the method.展开更多
This paper proposes a new approach for detecting human survivors in destructed environments using an autonomous robot. The proposed system uses a passive infrared sensor to detect the existence of living humans and a ...This paper proposes a new approach for detecting human survivors in destructed environments using an autonomous robot. The proposed system uses a passive infrared sensor to detect the existence of living humans and a low-cost camera to acquire snapshots of the scene. The images are fed into a feed-forward neural network, trained to detect the existence of a human body or part of it within an obstructed environment. This approach requires a relatively small number of images to be acquired and processed during the rescue operation, which considerably reduces the cost of image processing, data transmission, and power consumption. The results of the conducted experiments demonstrated that this system has the potential to achieve high performance in detecting living humans in obstructed environments relatively quickly and cost-effectively. The detection accuracy ranged between 79% and 91% depending on a number of factors such as the body position, the light intensity, and the relative color matching between the body and the surrounding environment.展开更多
基金supported by the Opening Fund of Shandong Provincial Key Laboratory of Network based Intelligent Computing,the National Natural Science Foundation of China(52205529,61803192)the Natural Science Foundation of Shandong Province(ZR2021QE195)+1 种基金the Youth Innovation Team Program of Shandong Higher Education Institution(2023KJ206)the Guangyue Youth Scholar Innovation Talent Program support received from Liaocheng University(LCUGYTD2022-03).
文摘Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.
基金Project(2012AA041504)supported by the National High-Tech Research and Development Program of ChinaProject(KYLX15_1418)supported by the 2015 Annual General University Graduate Research and Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between "Velocity-driven Mode" and "Torquedriven Mode". To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines.
基金Supported by the National High Technology Research and Development Programme of China(No.#2012AA041505)
文摘This paper proposes two novel rescue robots,including a cutter robot and a jack robot,which are aimed to contribute to rescue activities such as to cut through obstacles and to jack up debris in dangerous sites and narrow spaces,where a rescue team can not work or approach.Firstly,a multilinked tracked rescue robot platform composed of connected crawler vehicles is developed,which has high mobility on irregular terrain and ability to move into narrow collapsed structures.Then,the cutter robot and jack robot are designed on the basis of rescue robot platform equipped with a cutter or a jack mechanism and corresponding manipulators in the front segment.The cutter refitted by an angle grinder is able to cut through 10 mm diameter steel bars.The electric jack mechanism designed based on multiple layers screw sleeves structure can lift up 300 kg load from 70 mm to 400 mm.Experimental results validate the capability of the two rescue robots.
基金National Natural Science Foundation of China(No. 60375029)National Hi-tech Research and Development Program of China(863 Program,No.2006AA04Z254)
文摘A portable shape-shifting mobile robot system named as Amoeba Ⅱ(A-Ⅱ) is developed for the urban search and rescue application. It is designed with three degrees of freedom and two tracked drive systems. This robot consists of two modular mobile units and a joint unit. The mobile unit is a tracked mechanism to enforce the propulsion of robot. And the joint unit can transform the robot shape to get high environment adaptation. A-Ⅱ robot can not only adapt to the environment but also change its body shape according to the locus space. It behaves two work states including the linear state (named as I state) and the parallel state (named as Ⅱ state). With the linear state the robot can climb upstairs and go through narrow space such as the pipe, cave, etc. The parallel state enables the robot with high mobility on rough ground. Also, the joint unit can propel the robot to roll in sidewise direction. Two modular A-Ⅱ robots can be connected through jointing common interfaces on the joint unit to compose a stronger shape-shifting robot, which can transform the body into four wheels-driven vehicle. The experimental results validate the adaptation and mobility of A-Ⅱ robot.
基金the National Hi-tech Research and Development Program of China for its financial support(No.2006AA04Z208).
文摘After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performance and explosion-proof capability. For this type of environment,we designed a mobile platform for a rocker-type coal mine rescue robot with four independent drive wheels.The composition and operational principles of the mobile platform are introduced,we discuss the flameproof design of the rocker assembly,as well as the operational principles and mechanical structure of the bevel gear differential and the main parameters are provided.Motion simulation of the differential function and condition of the robot running on virtual,uneven terrain is carried out with ADAMS.The simulation results show that the differential device can maintain the main body of the robot at an average angle between two rockers.The robot model has good operating performance.Experiments on terrain adaptability and surmounting obstacle performance of the robot prototype have been carried out.The results indicate that the prototype has good terrain adaptability and strong obstacle-surmounting performance.
基金Projects(61573213,61473174,61473179)supported by the National Natural Science Foundation of ChinaProjects(ZR2015PF009,ZR2014FM007)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(2014GGX103038)supported by the Shandong Province Science and Technology Development Program,ChinaProject(2014ZZCX04302)supported by the Special Technological Program of Transformation of Initiatively Innovative Achievements in Shandong Province,China
文摘An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments.
基金the National Natural Science Foundation of China(50674075)
文摘The localization for mine rescue robot in unknown space of coal mine emer- gency was researched,basing on the requirement of mine rescue robot localization which enters the scene of the coal mine accident,unknown circumstance,the unstructured, non-Gaussian and nonlinear work-space for robot works.The localization using particle filter was proposed to which is applied in mine rescue robot in unknown under-ground space.Meanwhile,focusing on severe particle sample degeneracy in the primary particle filter,an improved particle filter was proposed to reinforce the stability of particle filter.Be- ing compared with localization using extended Kalman filter through simulation experiment the localization using particle filter is proved to have more locating accuracy in unknown underground space and better computational real-time ability,which solves the pre-local- ization problem of robot underground.
基金supported by the Graduate Science and Technology Innovation Fund(YCB100150)
文摘By introdming a small-caliber deep well rescue robot, a hold-hug pattern rescue mechanism was brought forward. In order to reduce the volmne, the trader-well rescue imclmnism is modularizing designed. At the same tirae, the audio and video systyems, the illumination system and the ventilation system are expatiated. The rescuing robot can rescue the falling person in the deep well, it can save much manateral resources and time. It's really an ideal rescue device for the small-caliber fall.
基金supported by State Key Laboratory of Robotics and System of Harbin Institute of Technology(SKLRS-2009-MS-03)
文摘A wireless communication method with dynamic adding nodes for Underground Search and Rescue robot is proposed: fix the address of the controller, add repeater nodes into the net dynamically, and shift the address of the mobile terminal. With this method, the Search and Rescue robot can reach the deeper place of a mine to help rescue and keep in touch with the controller through wireless communication in a single channel, even in a complex laneway where radio wave cannot go through the thick wall. The collision in the process of the two-way multi-hop communication in the single channel will also be resolved by the communication direction priority and response signal mechanism, to enhance the reliability of communication. Finally, a sample is designed and an experiment is conducted to verify the efficiency of the method.
文摘This paper proposes a new approach for detecting human survivors in destructed environments using an autonomous robot. The proposed system uses a passive infrared sensor to detect the existence of living humans and a low-cost camera to acquire snapshots of the scene. The images are fed into a feed-forward neural network, trained to detect the existence of a human body or part of it within an obstructed environment. This approach requires a relatively small number of images to be acquired and processed during the rescue operation, which considerably reduces the cost of image processing, data transmission, and power consumption. The results of the conducted experiments demonstrated that this system has the potential to achieve high performance in detecting living humans in obstructed environments relatively quickly and cost-effectively. The detection accuracy ranged between 79% and 91% depending on a number of factors such as the body position, the light intensity, and the relative color matching between the body and the surrounding environment.