In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)...In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)2acac(10 nm)/Alq3(25 nm)/BCP(5 nm)/Cs F(1 nm)/Al(150 nm)(x= 0.15,2.5 and 3.0 wt%),where NPB and BCP are used as the hole-injecting layer,electron transporting and hole blocking layer,respectively.White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration.The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m^2 at 14 V.The Commission International de I'Eclairage(CIE)(1931) coordinates of white emission are well within the white zone,which moves from(0.35,0.33) to(0.26,0.30) when the applied voltage is varied from 5 V to 14 V.展开更多
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue therm...Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.展开更多
Several highly efficient iridium-complex polymer light-emitting devices (PLEDs) are fabricated, with a newly synthesized blue conjugated polymer, poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)-fluorene)-co-(3,7-dib...Several highly efficient iridium-complex polymer light-emitting devices (PLEDs) are fabricated, with a newly synthesized blue conjugated polymer, poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)-fluorene)-co-(3,7-dibenziothiene-S,S- dioxide15)] (PPF-3,TSO15), chosen as host. High luminous efficiencies of 7.4 cd.A-1 and 27.4 cd.A-1 are achieved in red and green PLEDs, respectively, by optimizing the doping concentrations of red phosphorescent dye iridium bis(1- phenylisoquinoline) (acetylacetonate) (Ir(piq)) and green phosphorescent dye iridium tris(2-(4-tolyl)pyridinato-N, C2') (Ir(mppy)3).Furthermore, highly efficient white PLEDs (WPLEDs) with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.35, 0.38) are successfully produced by carefully controlling the doping concentration of the irid- ium complex. The obtained WPLEDs show maximal efficiencies of 14.4 cd.A-1 and 10.1 lm.W-1, which are comparable to those of incandescent bulbs. Moreover, the electroluminescent spectrum of the white device with an initial luminance of about 1000 cd.m-2 is stable, subject to constant applied current stress, indicating that good device stability can be obtained in this system.展开更多
A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs ...A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2 @8 V with the Commission Internationale de l'Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED.展开更多
We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, t...We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm- peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic "remote-phosphor" color conversion.展开更多
Electroluminescence (EL) characteristics have been studied for a hybrid tandem white organic light emitting diode (OLED) with a blue emitting fluorescent EL1 unit based on BCzVBi and a yellow emitting phosphoresce...Electroluminescence (EL) characteristics have been studied for a hybrid tandem white organic light emitting diode (OLED) with a blue emitting fluorescent EL1 unit based on BCzVBi and a yellow emitting phosphorescent EL2 unit based on (fbi)2Ir(acac), where a MoO3 layer is inserted between EL1 and EL2 units as charge generation layer (CGL). Maximum current and power efficiencies of 68.1 cd/A and 29.2 lm/W were obtained, respectively, while the current and power efficiencies at luminance of 1000 cd/m2 were 68.0 cd/A and 24.6 lm/W. The yellow emission appears from about 4.5 V firstly, while the blue emission starts to appear from about 5.4 V. It was found that charge generation from CGL of MoO3/NPB bilayer occurred at high voltages of above 5.4 V but not at low voltages below 5.2 V.展开更多
In this paper, we proposed quantum dot (QD) based structure for implementation of white light emitting diode (WLED) based on InGaN/GaN. The proposed structure included three layers of InGaN QD with box shapes and ...In this paper, we proposed quantum dot (QD) based structure for implementation of white light emitting diode (WLED) based on InGaN/GaN. The proposed structure included three layers of InGaN QD with box shapes and GaN barriers. By using of single band effective mass method and considering strain effect, piezoelectric and spontaneous polarizations internal fields, then solving Schr/Sdinger and Poisson equations self consistently, we obtained electron and hole eigen energies and wave functions. By evaluating dipole moment matrix elements for interband transitions, the output intensity was calcu- lated due to the interband transition between two energy levels with highest emission probability. We adjusted QDs dimensions and material compositions so that the output light can be close to the ideal white light in chromaticity diagrams. Finally, effects of temperature variations on output spectrum and chromaticity coordinates were studied. We demonstrated that temperature variations in the range of I00 to 400K decrease output intensity, broaden output spectral profile and cause a red shift in three main colors spectrums. This temperature variation deviates (x, y) are coordinated in the chromaticity diagram, but the output color still remains close to white.展开更多
文摘In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)2acac(10 nm)/Alq3(25 nm)/BCP(5 nm)/Cs F(1 nm)/Al(150 nm)(x= 0.15,2.5 and 3.0 wt%),where NPB and BCP are used as the hole-injecting layer,electron transporting and hole blocking layer,respectively.White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration.The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m^2 at 14 V.The Commission International de I'Eclairage(CIE)(1931) coordinates of white emission are well within the white zone,which moves from(0.35,0.33) to(0.26,0.30) when the applied voltage is varied from 5 V to 14 V.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675041 and 61605253)the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(Grant No.61421002)the Science&Technology Department Program of Sichuan Province,China(Grant No.2016HH0027)
文摘Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.
基金Project supported by the National Basic Research Program of China (Grant No. 2009CB623602)the National Natural Science Foundation of China (Grant No. U0634003)
文摘Several highly efficient iridium-complex polymer light-emitting devices (PLEDs) are fabricated, with a newly synthesized blue conjugated polymer, poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)-fluorene)-co-(3,7-dibenziothiene-S,S- dioxide15)] (PPF-3,TSO15), chosen as host. High luminous efficiencies of 7.4 cd.A-1 and 27.4 cd.A-1 are achieved in red and green PLEDs, respectively, by optimizing the doping concentrations of red phosphorescent dye iridium bis(1- phenylisoquinoline) (acetylacetonate) (Ir(piq)) and green phosphorescent dye iridium tris(2-(4-tolyl)pyridinato-N, C2') (Ir(mppy)3).Furthermore, highly efficient white PLEDs (WPLEDs) with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.35, 0.38) are successfully produced by carefully controlling the doping concentration of the irid- ium complex. The obtained WPLEDs show maximal efficiencies of 14.4 cd.A-1 and 10.1 lm.W-1, which are comparable to those of incandescent bulbs. Moreover, the electroluminescent spectrum of the white device with an initial luminance of about 1000 cd.m-2 is stable, subject to constant applied current stress, indicating that good device stability can be obtained in this system.
基金Project supported by the National Natural Science Foundation of China(Grant No.21302122)the Science and Technology Commission of Shanghai Municipality,China(Grant No.13ZR1416600)
文摘A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2 @8 V with the Commission Internationale de l'Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50872091 and 21076161)the Tianjin Municipal Sci/Tech. Commission, China (Grant Nos. 10SYSYJC28100 and 2006ZD30)the Tianjin Municipal Higher Education Commission, China (Grant No. 20110304)
文摘We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm- peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic "remote-phosphor" color conversion.
文摘Electroluminescence (EL) characteristics have been studied for a hybrid tandem white organic light emitting diode (OLED) with a blue emitting fluorescent EL1 unit based on BCzVBi and a yellow emitting phosphorescent EL2 unit based on (fbi)2Ir(acac), where a MoO3 layer is inserted between EL1 and EL2 units as charge generation layer (CGL). Maximum current and power efficiencies of 68.1 cd/A and 29.2 lm/W were obtained, respectively, while the current and power efficiencies at luminance of 1000 cd/m2 were 68.0 cd/A and 24.6 lm/W. The yellow emission appears from about 4.5 V firstly, while the blue emission starts to appear from about 5.4 V. It was found that charge generation from CGL of MoO3/NPB bilayer occurred at high voltages of above 5.4 V but not at low voltages below 5.2 V.
文摘In this paper, we proposed quantum dot (QD) based structure for implementation of white light emitting diode (WLED) based on InGaN/GaN. The proposed structure included three layers of InGaN QD with box shapes and GaN barriers. By using of single band effective mass method and considering strain effect, piezoelectric and spontaneous polarizations internal fields, then solving Schr/Sdinger and Poisson equations self consistently, we obtained electron and hole eigen energies and wave functions. By evaluating dipole moment matrix elements for interband transitions, the output intensity was calcu- lated due to the interband transition between two energy levels with highest emission probability. We adjusted QDs dimensions and material compositions so that the output light can be close to the ideal white light in chromaticity diagrams. Finally, effects of temperature variations on output spectrum and chromaticity coordinates were studied. We demonstrated that temperature variations in the range of I00 to 400K decrease output intensity, broaden output spectral profile and cause a red shift in three main colors spectrums. This temperature variation deviates (x, y) are coordinated in the chromaticity diagram, but the output color still remains close to white.