In this short note, we show that it is more natural to look the fractional Brownian motion as functionals of the standard white noises, and the fractional white noise calculus developed by Hu and Фksendal follows dir...In this short note, we show that it is more natural to look the fractional Brownian motion as functionals of the standard white noises, and the fractional white noise calculus developed by Hu and Фksendal follows directly from the classical white noise functional calculus. As examples we prove that the fractional Girsanov formula, the Ito type integrals and the fractional Black-Scholes formula are easy consequences of their classical counterparts. An extension to the fractional Brownian sheet is also briefly discussed.展开更多
This investigation aims at a new construction of anisotropic fractional Brownian random fields by the white noise approach. Moreover, we investigate its distribution and sample properties (stationariness of increment...This investigation aims at a new construction of anisotropic fractional Brownian random fields by the white noise approach. Moreover, we investigate its distribution and sample properties (stationariness of increments, self-similarity, sample continuity) which will furnish some useful views to future applications.展开更多
In this article, we study the existence of collision local time of two indepen- dent d-dimensional fractional Ornstein-Uhlenbeck processes X+^H1 and Xt^H2 with different parameters Hi ∈ (0, 1),i = 1, 2. Under the ...In this article, we study the existence of collision local time of two indepen- dent d-dimensional fractional Ornstein-Uhlenbeck processes X+^H1 and Xt^H2 with different parameters Hi ∈ (0, 1),i = 1, 2. Under the canonical framework of white noise analysis, we characterize the collision local time as a Hida distribution and obtain its' chaos expansion. Key words Collision local time; fractional Ornstein-Uhlenbeck processes; generalized white noise functionals; choas expansion展开更多
文摘In this short note, we show that it is more natural to look the fractional Brownian motion as functionals of the standard white noises, and the fractional white noise calculus developed by Hu and Фksendal follows directly from the classical white noise functional calculus. As examples we prove that the fractional Girsanov formula, the Ito type integrals and the fractional Black-Scholes formula are easy consequences of their classical counterparts. An extension to the fractional Brownian sheet is also briefly discussed.
基金Supported by the National Natural Science Foundation of China (No.10171035)
文摘This investigation aims at a new construction of anisotropic fractional Brownian random fields by the white noise approach. Moreover, we investigate its distribution and sample properties (stationariness of increments, self-similarity, sample continuity) which will furnish some useful views to future applications.
基金supported by the National Natural Science Fundation of China(71561017)the Science and Technology Plan of Gansu Province(1606RJZA041)+1 种基金the Youth Plan of Academic Talent of Lanzhou University of Finance and Economicssupported by the Fundamental Research Funds for the Central Universities(HUST2015QT005)
文摘In this article, we study the existence of collision local time of two indepen- dent d-dimensional fractional Ornstein-Uhlenbeck processes X+^H1 and Xt^H2 with different parameters Hi ∈ (0, 1),i = 1, 2. Under the canonical framework of white noise analysis, we characterize the collision local time as a Hida distribution and obtain its' chaos expansion. Key words Collision local time; fractional Ornstein-Uhlenbeck processes; generalized white noise functionals; choas expansion