期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental Study on Decolorization and Degradation of Reactive Brilliant Red X-3B in a White Rot Fungal Biofilm Reactor 被引量:5
1
作者 HUANG Min sheng, HUANG Rong, CHENG Yong qian, ZHANG Guo ying School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第3期260-264,共5页
Experimental results of an azo dye(reactive brilliant red X 3B, RBR X 3B) decolorization and degradation in a white rot fungal biofilm reactor were introduced and discussed. The fungal biofilm reactor is highly pote... Experimental results of an azo dye(reactive brilliant red X 3B, RBR X 3B) decolorization and degradation in a white rot fungal biofilm reactor were introduced and discussed. The fungal biofilm reactor is highly potential for dye decolorization and degradation with the highest decoloring rate of 95% within 96 hours reaction time at initial pH 4.5 under high nitrogen level (HN) (24 mmol/L ammonium tartrate) condition. Experimental conditions, such as nutrient nitrogen levels in reaction mixture and initial pH, significantly affected dye decolorization and degradation. Effluents from this biofilm reactor can be well treated to meet the discharging requirements by use of chemical flocculation.RBR X 3B was first absorbed onto fungal biomass and then degraded gradually. The SH 13 fungus monopolized the biofilm throughout the experiments, though the reactor was exposed to open air for 4 months. 展开更多
关键词 white rot fungi dye decolorization DEGRADATION
下载PDF
Interfacial processes and mechanisms of synergistic degradation of dichlorobiphenyl by white rot fungi and magnetite nanoparticles
2
作者 Le CHANG Guanghui YU Congqiang LIU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第9期2057-2065,共9页
The rapid increase in the artificial syntheses of organic pollutants has raised widespread concern.However,the mechanisms by which fungi degrade these new organic pollutants in the environment and adapt to environment... The rapid increase in the artificial syntheses of organic pollutants has raised widespread concern.However,the mechanisms by which fungi degrade these new organic pollutants in the environment and adapt to environmental stressors remain unclear.In this study,Phanerochaete chrysosporium,a model white rot fungus,was used to explore the interfacial processes and mechanisms for synergistic degradation of 4,4′-dichlorobiphenyl(PCB15)with magnetite nanoparticles.The results showed that after 3 and 5 days of cultivation with Phanerochaete chrysosporium alone,the rates for PCB15 degradation were 32%and 65%,respectively,indicating that the white rot fungus itself was able to degrade the organic pollutant.Moreover,the addition of magnetite nanoparticles significantly enhanced the degradation of PCB15 by Phanerochaete chrysosporium.After cocultivation for 3 and 5 days,the rates for PCB15 degradation increased to 42%and 84%,respectively.Synchrotron radiation-based Fourier transform infrared spectromicroscopy(SR-FTIR)showed that the magnetite particles were tightly adhered to the fungal hyphae and were unevenly distributed on the hyphal surfaces.Furthermore,cocultivation of the fungus and magnetite nanoparticles significantly enhanced the nanozymatic activity of magnetite.A linear regression model provided a significantly negative correlation(r=−0.96,p<0.001)between the nanozymatic activity of the magnetite and the concentration ratio of the PCB15,supporting the hypothesis that white rot fungi degraded the PCB15 by enhancing the nanozyme activity of magnetite.High-resolution X-ray photoelectron spectroscopy(XPS)revealed that the nanozymatic activity of magnetite was mainly governed by oxygen vacancies on the mineral surfaces rather than the iron valence.Together,these findings increase our understanding of the powerful capabilities of fungi in terms of stress resistance and adaptation to extreme environments and provide new insights into fungal-mediated degradation of organic pollutants for soil remediation in contaminated sites. 展开更多
关键词 Magnetite nanoparticles Nanozymes Oxygen vacancies white rot fungi X-ray photoelectron spectroscopy Synchrotron radiation based FTIR spectromicroscopy Dichlorobiphenyl
原文传递
To enhance the reproduction of Phanerochaete chrysosporium by adding natural lixiviums in liquid medium 被引量:1
3
作者 LIN Gang, WEN Xiang-hua, QIAN Yi (Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第6期808-814,共7页
Great promotion to the reproduction of white rot fungus Phanerochaete chrysosporium by adding natural lixiviums such as from wood, maize core and potato in liquid medium was found in this research. Incubated in the li... Great promotion to the reproduction of white rot fungus Phanerochaete chrysosporium by adding natural lixiviums such as from wood, maize core and potato in liquid medium was found in this research. Incubated in the liquid medium contained 10 mg/L glucose as carbon source with natural lixiviums for three days, the production of mycelium pellet reaches more than 80 g/L, which is 5 times more than that of without natural lixiviums. Incubated in the liquid medium contained 5 mg/L glucose as carbon source with natural lixiviums for three days, the production of mycelium pellet can reach 69.5 g/L, while the production in the medium without natural lixiviums is very low. When the liquid medium contained 1—20 g/L glucose as carbon source, the production of mycelium pellet in 3 d can only reach 12.5 g/L to 14.5 g/L. The fungus in the medium with potato lixiviums are easily contaminated by other microorganisms and in the medium with maize core lixiviums are easily bulking, while in the medium with wood lixiviums are neither easily contaminated nor bulking. Medium with wood lixiviums can produce more pellet than other medium, endure contamination and keep better sedimentation capacity. So that, wood lixivium is better additive to the culture of white rot fungi in liquid medium. Addition of the mixture of wood, maize core and potato lixiviums is of advantage to the production of mycelium pellet. The difference of the production in the medium with different amount of wood lixiviums showed little in the first 3 d, while it expanded after 3 d. Wood lixiviums stimulate the growth of P. chrysosporium instead of supply organics which fungi need. 展开更多
关键词 white rot fungi MEDIUM ADDITIVE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部