The effect of heat treatment on hardness and impact toughness of CuCr containing rare earth alloy was studied by means of metallographic, XRD, SEM/EDX, TEM and mechanical property test. The results show that the heat ...The effect of heat treatment on hardness and impact toughness of CuCr containing rare earth alloy was studied by means of metallographic, XRD, SEM/EDX, TEM and mechanical property test. The results show that the heat treatment can change the hardness of CuCr alloy, and has smaller influence to its impact toughness. The optimum properties of CuCr containing RE alloy could be obtained by aging treatment at 500 ℃ for 2 h. And the causes of the above changes and the function of RE were analyzed.展开更多
The influence of temperature during post-weld heat treatment on the microstructure and properties of KMN steel joints was investigated. The results reveal that after heat treatment, the martensite transformed to tempe...The influence of temperature during post-weld heat treatment on the microstructure and properties of KMN steel joints was investigated. The results reveal that after heat treatment, the martensite transformed to tempered sorbite, causing the softening of the resultant joints. XRD test shows that the residual austenite content decreased obviously when the joint was heattreated at 550 ℃ and 580 ℃, which degraded the impact toughness of heat-affected zone ( HAZ). When the heat treatment temperature increased further, the dispersion strengthening from the precipitation of alloying elements improved the impact toughness of HAZ. The aggregation and coarsening of carbide also contributed to the improvement of impact toughness of HAZ.展开更多
文摘The effect of heat treatment on hardness and impact toughness of CuCr containing rare earth alloy was studied by means of metallographic, XRD, SEM/EDX, TEM and mechanical property test. The results show that the heat treatment can change the hardness of CuCr alloy, and has smaller influence to its impact toughness. The optimum properties of CuCr containing RE alloy could be obtained by aging treatment at 500 ℃ for 2 h. And the causes of the above changes and the function of RE were analyzed.
文摘The influence of temperature during post-weld heat treatment on the microstructure and properties of KMN steel joints was investigated. The results reveal that after heat treatment, the martensite transformed to tempered sorbite, causing the softening of the resultant joints. XRD test shows that the residual austenite content decreased obviously when the joint was heattreated at 550 ℃ and 580 ℃, which degraded the impact toughness of heat-affected zone ( HAZ). When the heat treatment temperature increased further, the dispersion strengthening from the precipitation of alloying elements improved the impact toughness of HAZ. The aggregation and coarsening of carbide also contributed to the improvement of impact toughness of HAZ.