期刊文献+
共找到16,577篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation into the Methodology and Implementation of Life Cycle Engineering under China’s Carbon Reduction Target in the Process Industry
1
作者 Mingyang Li Feng Gao +3 位作者 Zuoren Nie Boxue Sun Yu Liu Xianzheng Gong 《Engineering》 SCIE EI CAS CSCD 2024年第9期87-99,共13页
The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achie... The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production. 展开更多
关键词 Carbon neutrality life cycle engineering Process Industry Carbon reduction technology ECO-DESIGN
下载PDF
Growth of RB Population in the Conversion Phase of Chlamydia Life Cycle
2
作者 Frederic Y.M.Wan 《Communications on Applied Mathematics and Computation》 EI 2024年第1期90-112,共23页
Upon infecting a host cell,the reticulate body(RB)form of the Chlamydia bacteria simply proliferates by binary fission for an extended period.Available data show only RB units in the infected cells 20 hours post infec... Upon infecting a host cell,the reticulate body(RB)form of the Chlamydia bacteria simply proliferates by binary fission for an extended period.Available data show only RB units in the infected cells 20 hours post infection(hpi),spanning nearly half way through the development cycle.With data collected every 4 hpi,conversion to the elementary body(EB)form begins abruptly at a rapid rate sometime around 24 hpi.By modeling proliferation and conversion as simple birth and death processes,it has been shown that the optimal strategy for maximizing the total(mean)EB population at host cell lysis time is a bang-bang control qualitatively replicating the observed conversion activities.However,the simple birth and death model for the RB proliferation and conversion to EB deviates in a significant way from the available data on the evolution of the RB population after the onset of RB-to-EB conversion.By working with a more refined model that takes into account a small size threshold eligibility requirement for conversion noted in the available data,we succeed in removing the deficiency of the previous models on the evolution of the RB population without affecting the optimal bang-bang conversion strategy. 展开更多
关键词 CHLAMYDIA life cycle Optimal control Maximal infectious spread Specie competitive survival
下载PDF
A Review of the Life Cycle Analysis for Plastic Waste Pyrolysis
3
作者 Dounmene Tadida Lhami Arielle Wafula Gerald Nalume Youwene Gilbert 《Open Journal of Polymer Chemistry》 2024年第3期113-145,共33页
Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the producti... Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions. 展开更多
关键词 PLASTICS thermal Recycling Carbon Dioxide Emissions life cycle Evaluation PYROLYSIS
下载PDF
A Building Information Modeling-Life Cycle Cost Analysis Integrated Model to Enhance Decisions Related to the Selection of Construction Methods at the Conceptual Design Stage of Buildings
4
作者 Nkechi McNeil-Ayuk Ahmad Jrade 《Open Journal of Civil Engineering》 2024年第3期277-304,共28页
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ... Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design. 展开更多
关键词 life cycle Cost Analysis (LCCA) Building Information Modeling (BIM) Cost Decision Modular Construction and 3D Concrete Printing
下载PDF
The potential impact of increased whole grain consumption among Chinese adults on reducing healthcare costs and carbon footprint
5
作者 Xin Zhang Jingjing Wang +2 位作者 Fuli Tan Haixiu Gao Shenggen Fan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2842-2852,共11页
Excessive consumption of refined grains harms human health and ecosystem viability.Whole grains,as a healthy and sustainable alternative to refined grains,can benefit individual health by providing dietary fiber,B vit... Excessive consumption of refined grains harms human health and ecosystem viability.Whole grains,as a healthy and sustainable alternative to refined grains,can benefit individual health by providing dietary fiber,B vitamins,and bioactive substances.Additionally,they aid in improving the environment due to their higher extraction rate and lower carbon emission during the processing stage.However,few studies have attempted to evaluate the economic and social benefits of increasing the amount of whole grain in grain intake.This paper estimates the potential savings in healthcare costs and reduced food carbon footprints(CFs)that could result from a shift toward whole grain consumption following the Chinese Dietary Guidelines(CDG).We investigate hypothetical scenarios where a certain proportion(5–100%)of Chinese adults could increase their whole grain intakes as proposed by CDG to meet the average shortfall of 30.2 g.In that case,the healthcare costs for associated diseases(e.g.,type2 diabetes mellitus(T2DM),cardiovascular disease(CVD),and colorectal cancer(CRC))are expected to reduce by a substantial amount,from USD 2.82 to 56.37 billion;the carbon emission levels are also projected to decrease by0.24–5.72 million tons.This study provides compelling evidence that advocating for the transition towards greater consumption of whole grain products could benefit individual health,the environment,and society,by reducing both healthcare costs and carbon emissions. 展开更多
关键词 whole grains cost analysis public health life cycle assessment(LCA) carbon footprint
下载PDF
A review of data-driven whole-life state of health prediction for lithium-ion batteries:Data preprocessing,aging characteristics,algorithms,and future challenges
6
作者 Yanxin Xie Shunli Wang +3 位作者 Gexiang Zhang Paul Takyi-Aninakwa Carlos Fernandez Frede Blaabjerg 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期630-649,I0013,共21页
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ... Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research. 展开更多
关键词 Lithium-ion batteries whole life cycle Aging mechanism Data-driven approach State of health Battery management system
下载PDF
Crystalline and amorphous metal sulfide composite electrode materials with long cycle life:Preparation and performance of hybrid capacitors
7
作者 DING Ning WANG Siyu +4 位作者 YU Shihua XU Pengcheng HAN Dandan SHI Dexin ZHANG Chao 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第9期1784-1794,共11页
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz... Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities. 展开更多
关键词 crystalline@amorphous heterostructure NiCo2S4@MoS2 hybrid supercapacitor defect design long cycle life
下载PDF
The Combination of BIM Technology with the Whole Life Cycle of Green Building 被引量:1
8
作者 Lili Pu Yueming Wang 《World Journal of Engineering and Technology》 2021年第3期604-613,共10页
In the rapid development of modern cities, the construction of green low-car</span><span style="white-space:normal;font-size:10pt;font-family:"">- </span><span style="whit... In the rapid development of modern cities, the construction of green low-car</span><span style="white-space:normal;font-size:10pt;font-family:"">- </span><span style="white-space:normal;font-size:10pt;font-family:"">bon livable cities and the realization of energy-saving and beautification of buildings </span><span style="white-space:normal;font-size:10pt;font-family:"">are</span><span style="white-space:normal;font-size:10pt;font-family:""> now being strongly promoted and ha</span><span style="white-space:normal;font-size:10pt;font-family:"">ve</span><span style="white-space:normal;font-size:10pt;font-family:"">become an important indicator of urban development. With the implementation of green building and BIM technology, the combination of BIM technology with green building is a new momentum in the development of the construction industry. The application of BIM can make the quantitative management of green buildings in the whole life cycle, get rid of the shackles of traditional models, make the design and construction process more accurate, and also make the whole pro</span><span style="white-space:normal;font-size:10pt;font-family:"">cess of green buildings more standardized. Among them, the core of BIM is the information model, and the core of green building is: low energy consum</span><span style="white-space:normal;font-size:10pt;font-family:"">ption, green and sustainable. This paper firstly explains the concepts and advantages of BIM technology and green building, and separately elaborates the significance of using both in the construction field. Secondly, the current development status of BIM technology and green building is obtained by studying and analyzing the development status and connection between them. Finally, combining BIM technology in the whole life cycle of green building, analyzing the current situation and advantages and disadvantages of using the combination of green building and BIM in actual engineering, clarifying the importance of using BIM in the whole life cycle of green building, and highlighting the combination of BIM technology and the whole life cycle of green building as an important tool for the future development of the construction industry. 展开更多
关键词 Green Building BIM Technology life cycle
下载PDF
The Application of Simulation Technique in Whole CIMS Life Cycle
9
作者 Xiong Guangleng and Guo Jianbo (Department of Automation, Tsinghua University Beijing 1000084, P.R.China ) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第3期64-67,70-72,共7页
The life cycle of CIMS (Computer Integrated Manufacturing System) includes four phases:requirement analyzing, designing, implementation and running. For reducing the risk of investment and achieving better economic re... The life cycle of CIMS (Computer Integrated Manufacturing System) includes four phases:requirement analyzing, designing, implementation and running. For reducing the risk of investment and achieving better economic results the simulation technique is needed in the above four phases of CIMS life cycle. Under the support of China 863/CIMS plan a series of simulation projects are established. Some of them are finished with succeed and have been used in application. In this paper four simulation projects are introduced.(1) The Integrated Manufacturing Simulation Software (IMSS). It is an integrated platform, based on the discrete event simulation principle. It can be used to analyze and design CIMS, especially FMS; and evaluate the daily production plan.(2) The Advanced Hierarchical Control System Emulator (AHCSE), a software system, based on the finite state machine principle. It can be used to analyze and design of CIMS hicrarchical control system, and check expanded system performance before expanding.(3) The Factory Scheduling Environment (FASE), a software system based on the discrete event simulation principle and artificial intelligence technology. It can be used for shop floor scheduling. (4) The Machining Process Simulator (MPS). It can simulate the machining process of machining center by computer. It can check the correctness of NC code (including interference and confliction) and replace the real machining center to support the simulation environment for shop floor scheduling and controlling. There are three companies and universities joining in these four projects, they are: Tsinghua University,Huazhong University of Technology, Beliing Institute of Computer Application and Simulation. 展开更多
关键词 Manufacturing systems Modeling and simulation CIAS life cycle.
下载PDF
Model Establishment of Whole Life Cycle for Energy Efficiency of Rural Residential Buildings in Northern China
10
作者 Chenxia Suo Yong Yang Solvang Wei Deng 《Energy and Power Engineering》 2012年第4期196-202,共7页
The building energy efficiency is determined by the climatic region and the energy-saving measures. In this paper an assessment model for energy efficiency of the rural residential buildings in the northern China was ... The building energy efficiency is determined by the climatic region and the energy-saving measures. In this paper an assessment model for energy efficiency of the rural residential buildings in the northern China was established by the method of whole life cycle. The energy consumption of the rural residential buildings in different stages was analyzed through quantitative method in this model. At the same time, the corresponding energy efficiency assessment system was developed. 展开更多
关键词 BUILDING Energy Efficiency whole life cycle Assessment System
下载PDF
Research on the Low Carbon Development Strategy of the Real Estate Enterprise Based on the Whole Life Cycle of the Project
11
作者 Guo Jinjin 《International English Education Research》 2015年第9期56-59,共4页
This paper analyzes the present development situations of the real estate industry, puts forwards the low carbon development strategies based on the project life cycle for the real estate enterprises, and points out t... This paper analyzes the present development situations of the real estate industry, puts forwards the low carbon development strategies based on the project life cycle for the real estate enterprises, and points out the corresponding assistant suggestions according to the predicament in the implementation of low carbon strategy. The purpose is to provide a theoretical reference for low carbon development of the real estate enterprises and the healthy and sustainable development of the real estate industry. 展开更多
关键词 the project life cycle Real estate enterprises Low carbon STRATEGY
下载PDF
Study on metal recovery process and kinetics of oxidative leaching from spent LiFePO_(4)Li-batteries
12
作者 Xiaoming Zhang Wen Xie +5 位作者 Xiaolei Zhou Wenjie Zhang Jiawei Wen Xin Wang Guoyong Huang Shengming Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期94-102,共9页
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th... A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry. 展开更多
关键词 Spent lifePO_(4)Li-batteries Oxidative leaching Kinetic study life cycle assessment
下载PDF
A review on plasma-based CO_(2) utilization:process considerations in the development of sustainable chemical production
13
作者 Sirui LI Giulia De FELICE +2 位作者 Simona EICHKORN Tao SHAO Fausto GALLUCCI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期1-16,共16页
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un... Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process. 展开更多
关键词 non-thermal plasma carbon capture and utilization process integration process intensification techno-economic analysis life cycle analysis
下载PDF
Life cycle assessment as a prospective tool for sustainable agriculture and food planning at a local level
14
作者 Andrea Lulovicova Stephane Bouissou 《Geography and Sustainability》 CSCD 2024年第2期251-264,共14页
Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments s... Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies. 展开更多
关键词 Environmental analysis Territorial life cycle assessment Prospective scenario Agri-food planning Local food system
下载PDF
Intervention control of aerobic exercise in maintaining quality of life and pulmonary hypertension in hemodialysis patients
15
作者 Dan-Dan Wang Min Cheng Chun-Ying Chen 《World Journal of Clinical Cases》 SCIE 2024年第20期4217-4229,共13页
BACKGROUND Pulmonary hypertension is a serious complication in the treatment of maintenance hemodialysis patients,which seriously affects the quality of life of patients and threatens their life safety.Prevention,trea... BACKGROUND Pulmonary hypertension is a serious complication in the treatment of maintenance hemodialysis patients,which seriously affects the quality of life of patients and threatens their life safety.Prevention,treatment and improvement of pulmonary hypertension are of great significance to improve the quality of life of patients.AIM To investigate the intervention and control of pedal-powered bicycle in maintaining quality of life and pulmonary hypertension in hemodialysis patients.METHODS 73 patients with maintenance hemadialysis combined with pulmonary arterial hypertension at a hemodialysis center in a certain hospital from May 2021 to May 2022 are selected.Patients are divided into two groups,37 cases in the control group(group C)and 36 cases in the intervention group(group I).Patients are divided into two groups,group C is treated with oral administration of betaglandin sodium combined with routine nursing care.Based on group C,group I conducts power cycling exercises.RESULTS After treatment,group I patients had higher muscle strength,36-Item Short Form Health Survey scores,and Kidney Disease Targets Areas scores;The 6-minute walk distance test index level was higher and the Borg score was lower;The group I had lower systolic blood pressure,greater vital capacity,higher positive emotion,lower systolic pulmonary artery pressure index level,higher arterial partial oxygen pressure level,lower pulmonary vascular resistance index level,and higher blood oxygen saturation level[158.91±11.89 vs 152.56±12.81,1795.01±603.18 vs 1907.20±574.15,24.00(22.00,29.00)vs 24.00(22.00,28.00),P<0.001].CONCLUSION Aerobic exercise combined with Western medicine treatment can effectively improve patients'pulmonary hypertension,alleviate their negative emotions,and enable them to achieve a higher level of quality of life. 展开更多
关键词 Aerobic exercise HEMODIALYSIS Pulmonary arterial hypertension cycle ergometer Quality of life
下载PDF
Cathode nanoarchitectonics with Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3): Overcoming the energy barriers of multielectron reactions for sodium-ion batteries
16
作者 Vaiyapuri Soundharrajan Sungjin Kim +7 位作者 Subramanian Nithiananth Muhammad H.Alfaruqi JunJi Piao Duong Tung Pham Vinod Mathew Sang A.Han Jung Ho Kim Jaekook Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Fur... High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Furthermore,the low electrical conductivity combined with a decline in capacity upon prolonged cycling(>1000 cycles)related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability.The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials.Herein,we introduce a new carbon-coated Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3)(NVFTP/C)material as a promising candidate in the NASICON family of cathodes for SIBs.With a high specific energy of∼457 Wh kg^(-1) and a high Na+insertion voltage of 3.0 V versus Na^(+)/Na,this cathode can undergo a reversible single-phase solid-solution and two-phase(de)sodiation evolution at 28 C(1 C=174.7 mAh g^(-1))for up to 10,000 cycles.This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials(Fe and Ti)with enriched Na^(+)-storage properties in practical SIBs. 展开更多
关键词 Fe and Ti swapping Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3) prolonged cycle life structural stabilit
下载PDF
Design of Fine Life Cycle Prediction System for Failure of Medical Equipment 被引量:1
17
作者 Ma Haowei Cheng Xu Jing Yang 《Journal of Artificial Intelligence and Technology》 2023年第2期39-45,共7页
The inquiry process of traditional medical equipment maintenance management is complex,which has a negative impact on the efficiency and accuracy of medical equipment maintenance management and results in a significan... The inquiry process of traditional medical equipment maintenance management is complex,which has a negative impact on the efficiency and accuracy of medical equipment maintenance management and results in a significant amount of wasted time and resources.To properly predict the failure of medical equipment,a method for failure life cycle prediction of medical equipment was developed.The system is divided into four modules:the whole life cycle management module constructs the life cycle data set of medical devices from the three parts of the management in the early stage,the middle stage,and the later stage;the status detection module monitors the main operation data of the medical device components through the normal value of the relevant sensitive data in the whole life cycle management module;and the main function of the fault diagnosis module is based on the normal value of the relevant sensitive data in the whole life cycle management module.The inference machine diagnoses the operation data of the equipment;the fault prediction module constructs a fine prediction system based on the least square support vector machine algorithm and uses the AFS-ABC algorithm to optimize the model to obtain the optimal model with the regularized parameters and width parameters;the optimal model is then used to predict the failure of medical equipment.Comparative experiments are designed to determine whether or not the design system is effective.The results demonstrate that the suggested system accurately predicts the breakdown of ECG diagnostic equipment and incubators and has a high level of support and dependability.The design system has the minimum prediction error and the quickest program execution time compared to the comparison system.Hence,the design system is able to accurately predict the numerous causes and types of medical device failure. 展开更多
关键词 medical device FAILURE life cycle inference engine prediction model parameter optimization
下载PDF
Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
18
作者 Yuchen Yang Lin Ma +2 位作者 Jie Yu Zewen Zhao Pengfei You 《Journal of Renewable Materials》 SCIE EI 2023年第3期1153-1179,共27页
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe... The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results. 展开更多
关键词 life cycle assessment Organic Rankine cycle NANOREFRIGERANT total energy consumption energy payback time
下载PDF
Origin and Basic Mechanism of Life
19
作者 Jan Helm 《Open Journal of Biophysics》 2024年第3期265-329,共65页
This paper presents in a concise way the main characteristics of life from the physical point of view and the most successful theories of biogenesis, together with a mathematical formulation and simulation of proto-bi... This paper presents in a concise way the main characteristics of life from the physical point of view and the most successful theories of biogenesis, together with a mathematical formulation and simulation of proto-biogenesis. We present here a calculation method for biochemical reactions based on the available reaction data base, and using this method, we calculate precise scenarios for the first life cycle, and for the first stages of terrestrial biological evolution. 展开更多
关键词 Proto-life-cycle Prebiotic Evolution PNA World Genetic Proto-Code LUCA
下载PDF
A techno-economic and life cycle assessment for the production of green methanol from CO_(2): catalyst and process bottlenecks 被引量:5
20
作者 Tomas Cordero-Lanzac Adrian Ramirez +6 位作者 Alberto Navajas Lieven Gevers Sirio Brunialti Luis MGandía Andrés T.Aguayo S.Mani Sarathy Jorge Gascon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期255-266,共12页
The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we pre... The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO_(2).We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO_(2).Our results indicate that up to 1.75 ton of CO_(2) can be abated per ton of produced methanol only if renewable energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5$kg1)or severe CO_(2) taxation(300$per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined. 展开更多
关键词 CO_(2) METHANOL Kinetic modeling Process simulation life cycle assessment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部