Acetoin is an important platform chemical,which has a wide range of applications in many industries.Halomonas bluephagenesis,a chassis for next generation of industrial biotechnology,has advantages of fast growth and ...Acetoin is an important platform chemical,which has a wide range of applications in many industries.Halomonas bluephagenesis,a chassis for next generation of industrial biotechnology,has advantages of fast growth and high tolerance to organic acid salts and alkaline environment.Here,α-acetolactate synthase andα-acetolactate decarboxylase from Bacillus subtilis 168 were co-expressed in H.bluephagenesis to produce acetoin from pyruvate.After reaction condition optimization and further increase ofα-acetolactate decarboxylase expression,acetoin production and yield were significantly enhanced to 223.4 mmol·L^(-1) and 0.491 mol·mol^(-1) from 125.4 mmol·L^(-1) and 0.333 mol·mol^(-1),respectively.Finally,the highest titer of 974.3 mmol·L^(-1)(85.84 g·L^(-1))of acetoin was accumulated from 2143.4 mmol·L^(-1)(188.6 g·L^(-1))of pyruvic acid within 8 h in fed-batch bioconversion under optimal reaction conditions.Moreover,the reusability of the cell catalysis was also tested,and the result illustrated that the whole-cell catalysis obtained 433.3,440.2,379.0,442.8 and 339.4 mmol·L^(-1)(38.2,38.8,33.4,39.0 and 29.9 g·L^(-1))acetoin in five repeated cycles under the same conditions.This work therefore provided an efficient H.bluephagenesis whole-cell catalysis with a broad development prospect in biosynthesis of acetoin.展开更多
2,5-Furandicarboxylic acid (FDCA) is a potential biorenewable chemical for applications including plastics, polyamides, drugs, etc. The selective biosynthesis of FDCA from 5-hydroxymethylfurfural (HMF) by a speci c en...2,5-Furandicarboxylic acid (FDCA) is a potential biorenewable chemical for applications including plastics, polyamides, drugs, etc. The selective biosynthesis of FDCA from 5-hydroxymethylfurfural (HMF) by a speci c enzyme poses a great challenge. In this study, we reported an e cient strategy to produce FDCA from HMF by the tandem biocatalysis of laccase (CotA-TJ102@UIO-66-NH 2 ) and Novozym 435. For the rst step, a nanoparticle metal organic framework was synthesized as a carrier to immobilize CotA-TJ102@UIO-66-NH 2 , which was assigned for the production of 5-formyl-2-furancarboxylic acid (FFCA) and featured an enzyme loading of 255.54 mg/g, speci c activity of 135.90 U/mg, and solid loading ratio of 99.65%. Under optimal conditions, an ideal FFCA yield of 98.5% was achieved, and the CotA-TJ102@UIO-66-NH2 pre- sented a high recycling capacity after 10 cycles. For the second step, Novozym 435 was applied for the further conversion of FFCA into FDCA, presenting a high FDCA yield of 95.5% under the optimized conditions. Novozym 435 also exhibited a high recyclability after eight cycles. As a result, the tandem biocatalysis strategy provided a 94.2% FDCA yield from HMF, indicating its excellence as a method for FDCA production.展开更多
Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liqu...Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.展开更多
Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell i...Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im- mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul- ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in- soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2x109 mlq, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99% biodegradation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza- tion system for sewage treatment.展开更多
AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical ...AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents. RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca^2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration. CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.展开更多
The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis....The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis.Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed.In this account,we focus on our efforts using the de novo approach to synthesis hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts.We hope that this account will promote further efforts toward fundamental research and wide applications of designed enzyme hybrid catalysts for expanding biocatalysis.展开更多
Multi-enzyme complexes are the results of natural evolution to facilitate cascade biocatalysis.Through enzyme colocalization within a complex,the transfer efficiency of reaction intermediates between adjacent cascade ...Multi-enzyme complexes are the results of natural evolution to facilitate cascade biocatalysis.Through enzyme colocalization within a complex,the transfer efficiency of reaction intermediates between adjacent cascade enzymes can be promoted,resulting in enhanced overall reaction efficiency.Inspired by nature,a variety of approaches have been developed for the assembly of artificial multi-enzyme complexes with different spatial organizations,aiming at improving the catalytic efficiency of enzyme cascade.A recent trend of this research area is the creation of enzyme complexes with a controllable spatial organization which helps with the mechanistic studies and bears the potential to further increase metabolic productivity.In this review,we summarize versatile strategies for the assembly of artificial multi-enzyme complexes,followed by an inspection of the mechanistic studies of artificial multi-enzyme complexes for their enhancement of catalytic efficiency.Furthermore,we provide some highlighted in vivo,ex vivo,and in vitro examples that demonstrate the ability of artificial multi-enzyme complexes for enhancing the overall production efficiency of value-added compounds.Recent research progress has revealed the great biotechnological potential of artificial multi-enzyme complexes as a powerful tool for biomanufacturing.展开更多
Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added comp...Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.展开更多
BACKGROUND: Electrophysiological properties of the song nucleus have been revealed using conventional techniques, such as intracellular and extracellular recording. Research concerning the neuronal activation propert...BACKGROUND: Electrophysiological properties of the song nucleus have been revealed using conventional techniques, such as intracellular and extracellular recording. Research concerning the neuronal activation properties and regulations of the song system at the cellular and ion channel level may help reveal the neural mechanism of song learning. OBJECTIVE: To perform whole-cell recording of robust nucleus of the arcopallium (RA) neurons in brain slices from adult zebra finches (Taeniopygia guttata) and observe the action potential, sodium/potassium current and the spontaneous postsynaptic current of RA neurons. DESIGN, TIME AND SETTING: Self-controlled, neuroelectrophysiological experiment. The study was performed at the Neurophysiology Laboratory of South China Normal University from April to September 2008. MATERIALS: Flaming/Brown puller P-97 was purchased from Sutter Ins, USA; Axopatch 700B amplifier and Digidata 1332A converter were purchased from Axon Instrument, USA; pClamp software was provided by Axon Instrument, USA. METHODS: RA neurons were acutely isolated from 24 healthy male zebra finches. The action potential, voltage-gate sodium/potassium current and spontaneous postsynaptic current were recorded by whole-cell recording technology. Data were analyzed by pClamp software. MAIN OUTCOME MEASURES: The amplitude and frequency of the action potential, and the amplitude of the voltage-dependent and spontaneous postsynaptic currents, were measured. RESULTS: (1) Testing of action potential: Cells exhibited a stable current-voltage relationship following a series of hyperpolarization stepped currents, and an action potential was triggered by the spike threshold. All the recorded cells displayed repetitive firing following depolarizing current injection, with a frequency beyond 100 Hz. (2) Testing of voltage-gate currents: The inward and outward whole-cell currents were observed after a series of depolarizing voltage steps. The inward current disappeared following the application of tetrodotoxin and the outward current was significantly inhibited by application of 4-aminopyfidione and tetraethylammonium chloride. (3) Testing of spontaneous postsynaptic current: The majority of recorded cells exhibited an inward synaptic current when the membrane potential was maintained at -60 mV, with some cells exhibiting a robustly outward current when the membrane potential was maintained at -30 mV. Tetrodotoxin was unable to affect the spontaneous postsynaptic current. Following application of bicuculline [y-aminobutyric acid (A) receptor antagonist] and high concentration kynurenic acid (ionotropic glutamate receptor antagonist), the inward and outward currents were completely inhibited. CONCLUSION: Under these experimental conditions, the action potential, sodium/potassium current and spontaneous postsynaptic current were recorded successfully in RA neurons. This indicates that the cells preserved relatively intact synaptic connections and normal physiological activity, which is required for investigating ion channels. The inward and outward whole-cell currents were sodium and potassium currents, respectively. The postsynaptic y-aminobutyric acid (A) receptors and ionotropic glutamate receptors contributed to the spontaneous postsynaptic current.展开更多
The microbial production of either ester/lactones or enantio-enriched alcohols through Baeyer-Villiger oxidation or stereoselective reduction of ketones,respectively,is possible by using whole cells of A.subglaciale F...The microbial production of either ester/lactones or enantio-enriched alcohols through Baeyer-Villiger oxidation or stereoselective reduction of ketones,respectively,is possible by using whole cells of A.subglaciale F134 as a bifunctional biocatalyst.The chemoselective pattern of acetophenone biotransformation catalyzed by these cells can be regulated through reaction temperature,directing the reaction either towards oxidation or reduction products.The Baeyer–Villiger oxidation activity of A.subglaciale F134 whole cells is particularly dependent on reaction temperature.Acetophenone was transformed efficiently to phenol via the primary Baeyer–Villiger product phenyl acetate at 20℃ after 48 h with 100% conversion.In contrast,at 35℃,enantio-enriched(S)-1-phenylethanol was obtained as the sole product with 64% conversion and 89% ee.In addition,A.subglaciale F134 cells also catalyze the selective reduction of various structurally different aldehydes and ketones to alcohols with 40% to 100% yield,indicating broad substrate spectrum and good enantioselectivity in relevant cases.Our study provides a bifunctional biocatalyst systemthat can be used in Baeyer–Villiger oxidation aswell as in asymmetric carbonyl reduction,setting the stage for future work concerning the identification and isolation of the respective enzymes.展开更多
Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituratio...Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca^2+ currents, delayed rectifier K^+ current and voltage-gated Na^+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.展开更多
BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,b...BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,brexanolone,zuranolone)targeting the GABA-A receptor were introduced.The zona incerta(ZI),an inhibitory subthalamic region mainly composed of GABAergic neurons,has been implicated in emotional regulation.Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms,while activation of ZI neurons in mice can either worsen or alleviate anxiety.Currently,there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents.AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice.METHODS A chronic restraint stress(CRS)model was utilized to induce depression in mice.Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI.Additionally,chemogenetic techniques were employed to modulate ZI GABAergic neurons.The performance of the mice in behavioral tests for depression and anxiety was observed.RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice.Twenty-eight days after the CRS model was established,depression-like and anxiety-like behaviors were observed in the mice.The excitability of GABAergic neurons in the ZI was reduced.Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors.Conversely,inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice.CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice,suggesting that these neurons could be a potential therapeutic target for treating depression.展开更多
Creatine is a naturally occurring derivative of an amino acid commonly utilized in functional foods and pharmaceuticals.Nevertheless,the current industrial synthesis of creatine relies on chemical processes,which may ...Creatine is a naturally occurring derivative of an amino acid commonly utilized in functional foods and pharmaceuticals.Nevertheless,the current industrial synthesis of creatine relies on chemical processes,which may hinder its utilization in certain applications.Therefore,a biological approach was devised that employs whole-cell biocatalysis in the bacterium Corynebacterium glutamicum,which is considered safe for use in food production,to produce safe-for-consumption creatine.The objective of this study was to identify a guanidinoacetate N-methyltransferase(GAMT)with superior catalytic activity for creatine production.Through employing whole-cell biocatalysis,a gamt gene from Mus caroli(Mcgamt)was cloned and expressed in C.glutamicum ATCC 13032,resulting in a creatine titer of 3.37 g/L.Additionally,the study employed a promoter screening strategy that utilized nine native strong promoters in C.glutamicum to enhance the expression level of GAMT.The highest titer was achieved using the P1676 promoter,reaching 4.14 g/L.The conditions of whole-cell biocatalysis were further optimized,resulting in a creatine titer of 5.42 g/L.This is the first report of successful secretory creatine expression in C.glutamicum,which provides a safer and eco-friendly approach for the industrial production of creatine.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0900200)the National Natural Science Foundation of China (Grant No.NSFC-21621004).
文摘Acetoin is an important platform chemical,which has a wide range of applications in many industries.Halomonas bluephagenesis,a chassis for next generation of industrial biotechnology,has advantages of fast growth and high tolerance to organic acid salts and alkaline environment.Here,α-acetolactate synthase andα-acetolactate decarboxylase from Bacillus subtilis 168 were co-expressed in H.bluephagenesis to produce acetoin from pyruvate.After reaction condition optimization and further increase ofα-acetolactate decarboxylase expression,acetoin production and yield were significantly enhanced to 223.4 mmol·L^(-1) and 0.491 mol·mol^(-1) from 125.4 mmol·L^(-1) and 0.333 mol·mol^(-1),respectively.Finally,the highest titer of 974.3 mmol·L^(-1)(85.84 g·L^(-1))of acetoin was accumulated from 2143.4 mmol·L^(-1)(188.6 g·L^(-1))of pyruvic acid within 8 h in fed-batch bioconversion under optimal reaction conditions.Moreover,the reusability of the cell catalysis was also tested,and the result illustrated that the whole-cell catalysis obtained 433.3,440.2,379.0,442.8 and 339.4 mmol·L^(-1)(38.2,38.8,33.4,39.0 and 29.9 g·L^(-1))acetoin in five repeated cycles under the same conditions.This work therefore provided an efficient H.bluephagenesis whole-cell catalysis with a broad development prospect in biosynthesis of acetoin.
基金supported by the National Key R&D Program of China (No. 2017YFB0306502)the Science Fund for Creative Research Groups (No. 21621004)+2 种基金the Project funded by China Postdoctoral Science Foundation (2019)the Key Project of Tianjin Science and Technology Committee (No. 17YFZCSY01080)the Program of Beiyang Young Scholar of Tianjin University (2012)
文摘2,5-Furandicarboxylic acid (FDCA) is a potential biorenewable chemical for applications including plastics, polyamides, drugs, etc. The selective biosynthesis of FDCA from 5-hydroxymethylfurfural (HMF) by a speci c enzyme poses a great challenge. In this study, we reported an e cient strategy to produce FDCA from HMF by the tandem biocatalysis of laccase (CotA-TJ102@UIO-66-NH 2 ) and Novozym 435. For the rst step, a nanoparticle metal organic framework was synthesized as a carrier to immobilize CotA-TJ102@UIO-66-NH 2 , which was assigned for the production of 5-formyl-2-furancarboxylic acid (FFCA) and featured an enzyme loading of 255.54 mg/g, speci c activity of 135.90 U/mg, and solid loading ratio of 99.65%. Under optimal conditions, an ideal FFCA yield of 98.5% was achieved, and the CotA-TJ102@UIO-66-NH2 pre- sented a high recycling capacity after 10 cycles. For the second step, Novozym 435 was applied for the further conversion of FFCA into FDCA, presenting a high FDCA yield of 95.5% under the optimized conditions. Novozym 435 also exhibited a high recyclability after eight cycles. As a result, the tandem biocatalysis strategy provided a 94.2% FDCA yield from HMF, indicating its excellence as a method for FDCA production.
基金the Natural Science Foundation of Guangdong Province (No. 020839).
文摘Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.
基金Supported by the National Natural Science Foundation of China(21036005)Scientific Technology Program of Zhejiang Province(2011C33016)
文摘Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im- mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul- ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in- soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2x109 mlq, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99% biodegradation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza- tion system for sewage treatment.
文摘AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents. RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca^2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration. CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.
文摘The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis.Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed.In this account,we focus on our efforts using the de novo approach to synthesis hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts.We hope that this account will promote further efforts toward fundamental research and wide applications of designed enzyme hybrid catalysts for expanding biocatalysis.
基金supported by the National Natural Science Foundation of China(21778073)。
文摘Multi-enzyme complexes are the results of natural evolution to facilitate cascade biocatalysis.Through enzyme colocalization within a complex,the transfer efficiency of reaction intermediates between adjacent cascade enzymes can be promoted,resulting in enhanced overall reaction efficiency.Inspired by nature,a variety of approaches have been developed for the assembly of artificial multi-enzyme complexes with different spatial organizations,aiming at improving the catalytic efficiency of enzyme cascade.A recent trend of this research area is the creation of enzyme complexes with a controllable spatial organization which helps with the mechanistic studies and bears the potential to further increase metabolic productivity.In this review,we summarize versatile strategies for the assembly of artificial multi-enzyme complexes,followed by an inspection of the mechanistic studies of artificial multi-enzyme complexes for their enhancement of catalytic efficiency.Furthermore,we provide some highlighted in vivo,ex vivo,and in vitro examples that demonstrate the ability of artificial multi-enzyme complexes for enhancing the overall production efficiency of value-added compounds.Recent research progress has revealed the great biotechnological potential of artificial multi-enzyme complexes as a powerful tool for biomanufacturing.
文摘Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.
基金the National Natural Science Foundation of China,No.30570232the Natural Science Foundation of Guangdong Province,No. 05005910Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education
文摘BACKGROUND: Electrophysiological properties of the song nucleus have been revealed using conventional techniques, such as intracellular and extracellular recording. Research concerning the neuronal activation properties and regulations of the song system at the cellular and ion channel level may help reveal the neural mechanism of song learning. OBJECTIVE: To perform whole-cell recording of robust nucleus of the arcopallium (RA) neurons in brain slices from adult zebra finches (Taeniopygia guttata) and observe the action potential, sodium/potassium current and the spontaneous postsynaptic current of RA neurons. DESIGN, TIME AND SETTING: Self-controlled, neuroelectrophysiological experiment. The study was performed at the Neurophysiology Laboratory of South China Normal University from April to September 2008. MATERIALS: Flaming/Brown puller P-97 was purchased from Sutter Ins, USA; Axopatch 700B amplifier and Digidata 1332A converter were purchased from Axon Instrument, USA; pClamp software was provided by Axon Instrument, USA. METHODS: RA neurons were acutely isolated from 24 healthy male zebra finches. The action potential, voltage-gate sodium/potassium current and spontaneous postsynaptic current were recorded by whole-cell recording technology. Data were analyzed by pClamp software. MAIN OUTCOME MEASURES: The amplitude and frequency of the action potential, and the amplitude of the voltage-dependent and spontaneous postsynaptic currents, were measured. RESULTS: (1) Testing of action potential: Cells exhibited a stable current-voltage relationship following a series of hyperpolarization stepped currents, and an action potential was triggered by the spike threshold. All the recorded cells displayed repetitive firing following depolarizing current injection, with a frequency beyond 100 Hz. (2) Testing of voltage-gate currents: The inward and outward whole-cell currents were observed after a series of depolarizing voltage steps. The inward current disappeared following the application of tetrodotoxin and the outward current was significantly inhibited by application of 4-aminopyfidione and tetraethylammonium chloride. (3) Testing of spontaneous postsynaptic current: The majority of recorded cells exhibited an inward synaptic current when the membrane potential was maintained at -60 mV, with some cells exhibiting a robustly outward current when the membrane potential was maintained at -30 mV. Tetrodotoxin was unable to affect the spontaneous postsynaptic current. Following application of bicuculline [y-aminobutyric acid (A) receptor antagonist] and high concentration kynurenic acid (ionotropic glutamate receptor antagonist), the inward and outward currents were completely inhibited. CONCLUSION: Under these experimental conditions, the action potential, sodium/potassium current and spontaneous postsynaptic current were recorded successfully in RA neurons. This indicates that the cells preserved relatively intact synaptic connections and normal physiological activity, which is required for investigating ion channels. The inward and outward whole-cell currents were sodium and potassium currents, respectively. The postsynaptic y-aminobutyric acid (A) receptors and ionotropic glutamate receptors contributed to the spontaneous postsynaptic current.
基金financially supported by the National Natural Science Foundation of China(No.21646014 and 21776134)the program of Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTE1851).
文摘The microbial production of either ester/lactones or enantio-enriched alcohols through Baeyer-Villiger oxidation or stereoselective reduction of ketones,respectively,is possible by using whole cells of A.subglaciale F134 as a bifunctional biocatalyst.The chemoselective pattern of acetophenone biotransformation catalyzed by these cells can be regulated through reaction temperature,directing the reaction either towards oxidation or reduction products.The Baeyer–Villiger oxidation activity of A.subglaciale F134 whole cells is particularly dependent on reaction temperature.Acetophenone was transformed efficiently to phenol via the primary Baeyer–Villiger product phenyl acetate at 20℃ after 48 h with 100% conversion.In contrast,at 35℃,enantio-enriched(S)-1-phenylethanol was obtained as the sole product with 64% conversion and 89% ee.In addition,A.subglaciale F134 cells also catalyze the selective reduction of various structurally different aldehydes and ketones to alcohols with 40% to 100% yield,indicating broad substrate spectrum and good enantioselectivity in relevant cases.Our study provides a bifunctional biocatalyst systemthat can be used in Baeyer–Villiger oxidation aswell as in asymmetric carbonyl reduction,setting the stage for future work concerning the identification and isolation of the respective enzymes.
基金supported by Science Development Foundation of Tianjin Institute of Education(20070301)
文摘Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca^2+ currents, delayed rectifier K^+ current and voltage-gated Na^+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.
基金Supported by the Natural Science Foundation of Xiaogan,China,No.XGKJ2023010036.
文摘BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,brexanolone,zuranolone)targeting the GABA-A receptor were introduced.The zona incerta(ZI),an inhibitory subthalamic region mainly composed of GABAergic neurons,has been implicated in emotional regulation.Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms,while activation of ZI neurons in mice can either worsen or alleviate anxiety.Currently,there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents.AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice.METHODS A chronic restraint stress(CRS)model was utilized to induce depression in mice.Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI.Additionally,chemogenetic techniques were employed to modulate ZI GABAergic neurons.The performance of the mice in behavioral tests for depression and anxiety was observed.RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice.Twenty-eight days after the CRS model was established,depression-like and anxiety-like behaviors were observed in the mice.The excitability of GABAergic neurons in the ZI was reduced.Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors.Conversely,inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice.CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice,suggesting that these neurons could be a potential therapeutic target for treating depression.
基金funded by National Natural Science Foundation of China(no.32272279)the Key R&D project of Qingdao Science and Technology Plan(22-3-3-hygg-29-hy).
文摘Creatine is a naturally occurring derivative of an amino acid commonly utilized in functional foods and pharmaceuticals.Nevertheless,the current industrial synthesis of creatine relies on chemical processes,which may hinder its utilization in certain applications.Therefore,a biological approach was devised that employs whole-cell biocatalysis in the bacterium Corynebacterium glutamicum,which is considered safe for use in food production,to produce safe-for-consumption creatine.The objective of this study was to identify a guanidinoacetate N-methyltransferase(GAMT)with superior catalytic activity for creatine production.Through employing whole-cell biocatalysis,a gamt gene from Mus caroli(Mcgamt)was cloned and expressed in C.glutamicum ATCC 13032,resulting in a creatine titer of 3.37 g/L.Additionally,the study employed a promoter screening strategy that utilized nine native strong promoters in C.glutamicum to enhance the expression level of GAMT.The highest titer was achieved using the P1676 promoter,reaching 4.14 g/L.The conditions of whole-cell biocatalysis were further optimized,resulting in a creatine titer of 5.42 g/L.This is the first report of successful secretory creatine expression in C.glutamicum,which provides a safer and eco-friendly approach for the industrial production of creatine.