Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell i...Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im- mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul- ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in- soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2x109 mlq, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99% biodegradation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza- tion system for sewage treatment.展开更多
AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical ...AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents. RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca^2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration. CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.展开更多
BACKGROUND: Electrophysiological properties of the song nucleus have been revealed using conventional techniques, such as intracellular and extracellular recording. Research concerning the neuronal activation propert...BACKGROUND: Electrophysiological properties of the song nucleus have been revealed using conventional techniques, such as intracellular and extracellular recording. Research concerning the neuronal activation properties and regulations of the song system at the cellular and ion channel level may help reveal the neural mechanism of song learning. OBJECTIVE: To perform whole-cell recording of robust nucleus of the arcopallium (RA) neurons in brain slices from adult zebra finches (Taeniopygia guttata) and observe the action potential, sodium/potassium current and the spontaneous postsynaptic current of RA neurons. DESIGN, TIME AND SETTING: Self-controlled, neuroelectrophysiological experiment. The study was performed at the Neurophysiology Laboratory of South China Normal University from April to September 2008. MATERIALS: Flaming/Brown puller P-97 was purchased from Sutter Ins, USA; Axopatch 700B amplifier and Digidata 1332A converter were purchased from Axon Instrument, USA; pClamp software was provided by Axon Instrument, USA. METHODS: RA neurons were acutely isolated from 24 healthy male zebra finches. The action potential, voltage-gate sodium/potassium current and spontaneous postsynaptic current were recorded by whole-cell recording technology. Data were analyzed by pClamp software. MAIN OUTCOME MEASURES: The amplitude and frequency of the action potential, and the amplitude of the voltage-dependent and spontaneous postsynaptic currents, were measured. RESULTS: (1) Testing of action potential: Cells exhibited a stable current-voltage relationship following a series of hyperpolarization stepped currents, and an action potential was triggered by the spike threshold. All the recorded cells displayed repetitive firing following depolarizing current injection, with a frequency beyond 100 Hz. (2) Testing of voltage-gate currents: The inward and outward whole-cell currents were observed after a series of depolarizing voltage steps. The inward current disappeared following the application of tetrodotoxin and the outward current was significantly inhibited by application of 4-aminopyfidione and tetraethylammonium chloride. (3) Testing of spontaneous postsynaptic current: The majority of recorded cells exhibited an inward synaptic current when the membrane potential was maintained at -60 mV, with some cells exhibiting a robustly outward current when the membrane potential was maintained at -30 mV. Tetrodotoxin was unable to affect the spontaneous postsynaptic current. Following application of bicuculline [y-aminobutyric acid (A) receptor antagonist] and high concentration kynurenic acid (ionotropic glutamate receptor antagonist), the inward and outward currents were completely inhibited. CONCLUSION: Under these experimental conditions, the action potential, sodium/potassium current and spontaneous postsynaptic current were recorded successfully in RA neurons. This indicates that the cells preserved relatively intact synaptic connections and normal physiological activity, which is required for investigating ion channels. The inward and outward whole-cell currents were sodium and potassium currents, respectively. The postsynaptic y-aminobutyric acid (A) receptors and ionotropic glutamate receptors contributed to the spontaneous postsynaptic current.展开更多
Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituratio...Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca^2+ currents, delayed rectifier K^+ current and voltage-gated Na^+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
Creatine is a naturally occurring derivative of an amino acid commonly utilized in functional foods and pharmaceuticals.Nevertheless,the current industrial synthesis of creatine relies on chemical processes,which may ...Creatine is a naturally occurring derivative of an amino acid commonly utilized in functional foods and pharmaceuticals.Nevertheless,the current industrial synthesis of creatine relies on chemical processes,which may hinder its utilization in certain applications.Therefore,a biological approach was devised that employs whole-cell biocatalysis in the bacterium Corynebacterium glutamicum,which is considered safe for use in food production,to produce safe-for-consumption creatine.The objective of this study was to identify a guanidinoacetate N-methyltransferase(GAMT)with superior catalytic activity for creatine production.Through employing whole-cell biocatalysis,a gamt gene from Mus caroli(Mcgamt)was cloned and expressed in C.glutamicum ATCC 13032,resulting in a creatine titer of 3.37 g/L.Additionally,the study employed a promoter screening strategy that utilized nine native strong promoters in C.glutamicum to enhance the expression level of GAMT.The highest titer was achieved using the P1676 promoter,reaching 4.14 g/L.The conditions of whole-cell biocatalysis were further optimized,resulting in a creatine titer of 5.42 g/L.This is the first report of successful secretory creatine expression in C.glutamicum,which provides a safer and eco-friendly approach for the industrial production of creatine.展开更多
We used whole-vacuolar patch-clamp recording mode to study the action mechanism of La3+ to Slow Vacuolar (SV) channels for the first time. We recorded SV channel currents of Xinlimei (Raphanus satirus L.) vacuolars. T...We used whole-vacuolar patch-clamp recording mode to study the action mechanism of La3+ to Slow Vacuolar (SV) channels for the first time. We recorded SV channel currents of Xinlimei (Raphanus satirus L.) vacuolars. The minimum activation potentials of voltage-dependent SV channels tied in 25+/-5 mV. The increase in cytoplasmic Ca2+ led to enhancement of SV-type currents. It was found that the threshold potential of activation shifted towards more depolarized values whenever cytoplasmic Ca2+ was increased. When 10(-10) mol/L free La3+ was added to the bath, SV-type current was suppressed by 60 similar to 75%. These data showed La3+ reduced ion permeabilities of Xinlimei root vacuolar membrane.展开更多
One kind of novel BLMs was fabricated by patch-clamp pipette technology characterized in considerably sensitive to changes of electrochemical parameters.Detectiye currents and voltage presented linear relationship whe...One kind of novel BLMs was fabricated by patch-clamp pipette technology characterized in considerably sensitive to changes of electrochemical parameters.Detectiye currents and voltage presented linear relationship when BLMs was formed and it could be confirmed by Gramicidin method.Ion current was increased by dihexyl (C_ (12)) modified ssDNA fixed on the BLMs and also indicated linear relationship to ssDNA's concentration due to the interaction of (C_ 12)-ssDNA and BLMs.Further more,the regression equations were different from BLMs fixed with ssDNA probe and a blank control BLM in the same experimental conditions.The ssDNA probe was successfully fixed on patch-clamp pipette supported-BLMs.Based on our studies,a biosensor with reactive element of patch-clamp pipette-supported BLMs has been established.展开更多
Deoxycholic acid(DCA)has been authorized by the Federal Drug Agency for cosmetic reduction of redundant submental fat.The hydroxylated product(6β-OH DCA)was developed to improve the solubility and pharmaceutic proper...Deoxycholic acid(DCA)has been authorized by the Federal Drug Agency for cosmetic reduction of redundant submental fat.The hydroxylated product(6β-OH DCA)was developed to improve the solubility and pharmaceutic properties of DCA for further applications.Herein,a combinatorial catalytic strategy was applied to construct a powerful Cytochrome P450 biocatalyst(CYP107D1,OleP)to convert DCA to 6β-OH DCA.Firstly,the weak expression of OleP was significantly improved using pRSFDuet-1 plasmid in the E.coli C41(DE3)strain.Next,the supply of heme was enhanced by the moderate overexpression of crucial genes in the heme biosynthetic pathway.In addition,a new biosensor was developed to select the appropriate redox partner.Furthermore,a cost-effective whole-cell catalytic system was constructed,resulting in the highest reported conversion rate of 6β-OH DCA(from 4.8%to 99.1%).The combinatorial catalytic strategies applied in this study provide an efficient method to synthesize high-value-added hydroxylated compounds by P450s.展开更多
In this study,we designed a Cd^(2+)whole-cell biosensor with both positive and negative feedback cascade am-plifiers in Pseudomonas putida KT2440(LTCM)based on our previous design with only a negative feedback amplifi...In this study,we designed a Cd^(2+)whole-cell biosensor with both positive and negative feedback cascade am-plifiers in Pseudomonas putida KT2440(LTCM)based on our previous design with only a negative feedback amplifier(TCM).The results showed that the newly developed biosensor LTCM was greatly improved compared to TCM.Firstly,the linear response range of LTCM was expanded while the maximum linear response range was raised from 0.05 to 0.1μM.Meanwhile,adding a positive feedback amplifier further increased the fluorescence output signal of LTCM 1.11–2.64 times under the same culture conditions.Moreover,the response time of LTCM for detection of practical samples was reduced from 6 to 4 h.At the same time,LTCM still retained very high sensitivity and specificity,while its lowest detection limit was 0.1 nM Cd^(2+)and the specificity was 23.29(compared to 0.1 nM and 17.55 in TCM,respectively).In summary,the positive and negative feedback cascade amplifiers effectively improved the performance of the biosensor LTCM,resulting in a greater linear response range,higher output signal intensity,and shorter response time than TCM while retaining comparable sensitivity and specificity,indicating better potential for practical applications.展开更多
Acetoin is an important platform chemical,which has a wide range of applications in many industries.Halomonas bluephagenesis,a chassis for next generation of industrial biotechnology,has advantages of fast growth and ...Acetoin is an important platform chemical,which has a wide range of applications in many industries.Halomonas bluephagenesis,a chassis for next generation of industrial biotechnology,has advantages of fast growth and high tolerance to organic acid salts and alkaline environment.Here,α-acetolactate synthase andα-acetolactate decarboxylase from Bacillus subtilis 168 were co-expressed in H.bluephagenesis to produce acetoin from pyruvate.After reaction condition optimization and further increase ofα-acetolactate decarboxylase expression,acetoin production and yield were significantly enhanced to 223.4 mmol·L^(-1) and 0.491 mol·mol^(-1) from 125.4 mmol·L^(-1) and 0.333 mol·mol^(-1),respectively.Finally,the highest titer of 974.3 mmol·L^(-1)(85.84 g·L^(-1))of acetoin was accumulated from 2143.4 mmol·L^(-1)(188.6 g·L^(-1))of pyruvic acid within 8 h in fed-batch bioconversion under optimal reaction conditions.Moreover,the reusability of the cell catalysis was also tested,and the result illustrated that the whole-cell catalysis obtained 433.3,440.2,379.0,442.8 and 339.4 mmol·L^(-1)(38.2,38.8,33.4,39.0 and 29.9 g·L^(-1))acetoin in five repeated cycles under the same conditions.This work therefore provided an efficient H.bluephagenesis whole-cell catalysis with a broad development prospect in biosynthesis of acetoin.展开更多
Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catal...Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catalysts is more cost-effective.However,in the process of whole-cell catalysis,heat treatment is often necessary due to the high optimum temperature of the enzyme.To enable efficient industrial application of whole-cell catalysis,an environmental friendly heating approach is highly desired.Inspired by the light harvest by blackbody materials,in this paper,we introduced a photothermal approach for harnessing the photon energy for enhanced whole-cell catalysis.A blackbody porous sponge(BPS)with excellent photothermal conversion efficiency was prepared as a bioreactor.Escherichia coli expressed with a thermophilic enzyme(β-glucosidase)was utilized as a model whole-cell catalyst.Moreover,the photothermal properties of the BPS and lightassisted whole-cell catalysis were systematically investigated,demonstrating promising application prospects.展开更多
Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma,which is the leading cause of irreversible blindness.Disruption of Ca^(2+)homeostasis plays an important role in glaucoma.Volta...Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma,which is the leading cause of irreversible blindness.Disruption of Ca^(2+)homeostasis plays an important role in glaucoma.Voltage-gated Ca^(2+)channel blockers have been shown to improve vision in patients with glaucoma.However,whether and how voltage-gated Ca^(2+)channels are involved in retinal ganglion cell apoptotic death are largely unknown.In this study,we found that total Ca^(2+)current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma,as determined by whole-cell patch-clamp electrophysiological recordings.Further analysis showed that L-type Ca^(2+)currents were downregulated while T-type Ca^(2+)currents were upregulated at the later stage of glaucoma.Western blot assay and immunofluorescence experiments confirmed that expression of the Ca_(V)1.2 subunit of L-type Ca^(2+)channels was reduced and expression of the Ca_(V)3.3 subunit of T-type Ca^(2+)channels was increased in retinas of the chronic ocular hypertension model.Soluble tumor necrosis factor-α,an important inflammatory factor,inhibited the L-type Ca^(2+)current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca^(2+)current.These changes were blocked by the tumor necrosis factor-αinhibitor XPro1595,indicating that both types of Ca^(2+)currents may be mediated by soluble tumor necrosis factor-α.The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α.TUNEL assays revealed that mibefradil,a T-type calcium channel blocker,reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension.These results suggest that T-type Ca^(2+)channels are involved in disrupted Ca^(2+)homeostasis and apoptosis of retinal ganglion cells in glaucoma,and application of T-type Ca^(2+)channel blockers,especially a specific CaV3.3 blocker,may be a potential strategy for the treatment of glaucoma.展开更多
基金Supported by the National Natural Science Foundation of China(21036005)Scientific Technology Program of Zhejiang Province(2011C33016)
文摘Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im- mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul- ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in- soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2x109 mlq, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99% biodegradation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza- tion system for sewage treatment.
文摘AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents. RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca^2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration. CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.
基金the National Natural Science Foundation of China,No.30570232the Natural Science Foundation of Guangdong Province,No. 05005910Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education
文摘BACKGROUND: Electrophysiological properties of the song nucleus have been revealed using conventional techniques, such as intracellular and extracellular recording. Research concerning the neuronal activation properties and regulations of the song system at the cellular and ion channel level may help reveal the neural mechanism of song learning. OBJECTIVE: To perform whole-cell recording of robust nucleus of the arcopallium (RA) neurons in brain slices from adult zebra finches (Taeniopygia guttata) and observe the action potential, sodium/potassium current and the spontaneous postsynaptic current of RA neurons. DESIGN, TIME AND SETTING: Self-controlled, neuroelectrophysiological experiment. The study was performed at the Neurophysiology Laboratory of South China Normal University from April to September 2008. MATERIALS: Flaming/Brown puller P-97 was purchased from Sutter Ins, USA; Axopatch 700B amplifier and Digidata 1332A converter were purchased from Axon Instrument, USA; pClamp software was provided by Axon Instrument, USA. METHODS: RA neurons were acutely isolated from 24 healthy male zebra finches. The action potential, voltage-gate sodium/potassium current and spontaneous postsynaptic current were recorded by whole-cell recording technology. Data were analyzed by pClamp software. MAIN OUTCOME MEASURES: The amplitude and frequency of the action potential, and the amplitude of the voltage-dependent and spontaneous postsynaptic currents, were measured. RESULTS: (1) Testing of action potential: Cells exhibited a stable current-voltage relationship following a series of hyperpolarization stepped currents, and an action potential was triggered by the spike threshold. All the recorded cells displayed repetitive firing following depolarizing current injection, with a frequency beyond 100 Hz. (2) Testing of voltage-gate currents: The inward and outward whole-cell currents were observed after a series of depolarizing voltage steps. The inward current disappeared following the application of tetrodotoxin and the outward current was significantly inhibited by application of 4-aminopyfidione and tetraethylammonium chloride. (3) Testing of spontaneous postsynaptic current: The majority of recorded cells exhibited an inward synaptic current when the membrane potential was maintained at -60 mV, with some cells exhibiting a robustly outward current when the membrane potential was maintained at -30 mV. Tetrodotoxin was unable to affect the spontaneous postsynaptic current. Following application of bicuculline [y-aminobutyric acid (A) receptor antagonist] and high concentration kynurenic acid (ionotropic glutamate receptor antagonist), the inward and outward currents were completely inhibited. CONCLUSION: Under these experimental conditions, the action potential, sodium/potassium current and spontaneous postsynaptic current were recorded successfully in RA neurons. This indicates that the cells preserved relatively intact synaptic connections and normal physiological activity, which is required for investigating ion channels. The inward and outward whole-cell currents were sodium and potassium currents, respectively. The postsynaptic y-aminobutyric acid (A) receptors and ionotropic glutamate receptors contributed to the spontaneous postsynaptic current.
基金supported by Science Development Foundation of Tianjin Institute of Education(20070301)
文摘Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca^2+ currents, delayed rectifier K^+ current and voltage-gated Na^+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金funded by National Natural Science Foundation of China(no.32272279)the Key R&D project of Qingdao Science and Technology Plan(22-3-3-hygg-29-hy).
文摘Creatine is a naturally occurring derivative of an amino acid commonly utilized in functional foods and pharmaceuticals.Nevertheless,the current industrial synthesis of creatine relies on chemical processes,which may hinder its utilization in certain applications.Therefore,a biological approach was devised that employs whole-cell biocatalysis in the bacterium Corynebacterium glutamicum,which is considered safe for use in food production,to produce safe-for-consumption creatine.The objective of this study was to identify a guanidinoacetate N-methyltransferase(GAMT)with superior catalytic activity for creatine production.Through employing whole-cell biocatalysis,a gamt gene from Mus caroli(Mcgamt)was cloned and expressed in C.glutamicum ATCC 13032,resulting in a creatine titer of 3.37 g/L.Additionally,the study employed a promoter screening strategy that utilized nine native strong promoters in C.glutamicum to enhance the expression level of GAMT.The highest titer was achieved using the P1676 promoter,reaching 4.14 g/L.The conditions of whole-cell biocatalysis were further optimized,resulting in a creatine titer of 5.42 g/L.This is the first report of successful secretory creatine expression in C.glutamicum,which provides a safer and eco-friendly approach for the industrial production of creatine.
基金The authors acknowledge the support of the National Natural Science Foundation of ChinaProvincial Natural Science Foundation of Shanxi.
文摘We used whole-vacuolar patch-clamp recording mode to study the action mechanism of La3+ to Slow Vacuolar (SV) channels for the first time. We recorded SV channel currents of Xinlimei (Raphanus satirus L.) vacuolars. The minimum activation potentials of voltage-dependent SV channels tied in 25+/-5 mV. The increase in cytoplasmic Ca2+ led to enhancement of SV-type currents. It was found that the threshold potential of activation shifted towards more depolarized values whenever cytoplasmic Ca2+ was increased. When 10(-10) mol/L free La3+ was added to the bath, SV-type current was suppressed by 60 similar to 75%. These data showed La3+ reduced ion permeabilities of Xinlimei root vacuolar membrane.
文摘One kind of novel BLMs was fabricated by patch-clamp pipette technology characterized in considerably sensitive to changes of electrochemical parameters.Detectiye currents and voltage presented linear relationship when BLMs was formed and it could be confirmed by Gramicidin method.Ion current was increased by dihexyl (C_ (12)) modified ssDNA fixed on the BLMs and also indicated linear relationship to ssDNA's concentration due to the interaction of (C_ 12)-ssDNA and BLMs.Further more,the regression equations were different from BLMs fixed with ssDNA probe and a blank control BLM in the same experimental conditions.The ssDNA probe was successfully fixed on patch-clamp pipette supported-BLMs.Based on our studies,a biosensor with reactive element of patch-clamp pipette-supported BLMs has been established.
基金supported by the National Key Research and Development Program of China(2019YFA0906400)the National First-class Discipline Program of Light Industry Technology and Engineering(LITE2018-08)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_2486)We thank Prof.Shengying Li(Shandong University,China)for providing plasmids pET28a-SelFdx1499 and pET28a-SelFdR0978.
文摘Deoxycholic acid(DCA)has been authorized by the Federal Drug Agency for cosmetic reduction of redundant submental fat.The hydroxylated product(6β-OH DCA)was developed to improve the solubility and pharmaceutic properties of DCA for further applications.Herein,a combinatorial catalytic strategy was applied to construct a powerful Cytochrome P450 biocatalyst(CYP107D1,OleP)to convert DCA to 6β-OH DCA.Firstly,the weak expression of OleP was significantly improved using pRSFDuet-1 plasmid in the E.coli C41(DE3)strain.Next,the supply of heme was enhanced by the moderate overexpression of crucial genes in the heme biosynthetic pathway.In addition,a new biosensor was developed to select the appropriate redox partner.Furthermore,a cost-effective whole-cell catalytic system was constructed,resulting in the highest reported conversion rate of 6β-OH DCA(from 4.8%to 99.1%).The combinatorial catalytic strategies applied in this study provide an efficient method to synthesize high-value-added hydroxylated compounds by P450s.
基金support provided by the National Key Research and Development Program of China(2018YFA0902100)the National Natural Science Foundation of China(21576197).
文摘In this study,we designed a Cd^(2+)whole-cell biosensor with both positive and negative feedback cascade am-plifiers in Pseudomonas putida KT2440(LTCM)based on our previous design with only a negative feedback amplifier(TCM).The results showed that the newly developed biosensor LTCM was greatly improved compared to TCM.Firstly,the linear response range of LTCM was expanded while the maximum linear response range was raised from 0.05 to 0.1μM.Meanwhile,adding a positive feedback amplifier further increased the fluorescence output signal of LTCM 1.11–2.64 times under the same culture conditions.Moreover,the response time of LTCM for detection of practical samples was reduced from 6 to 4 h.At the same time,LTCM still retained very high sensitivity and specificity,while its lowest detection limit was 0.1 nM Cd^(2+)and the specificity was 23.29(compared to 0.1 nM and 17.55 in TCM,respectively).In summary,the positive and negative feedback cascade amplifiers effectively improved the performance of the biosensor LTCM,resulting in a greater linear response range,higher output signal intensity,and shorter response time than TCM while retaining comparable sensitivity and specificity,indicating better potential for practical applications.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0900200)the National Natural Science Foundation of China (Grant No.NSFC-21621004).
文摘Acetoin is an important platform chemical,which has a wide range of applications in many industries.Halomonas bluephagenesis,a chassis for next generation of industrial biotechnology,has advantages of fast growth and high tolerance to organic acid salts and alkaline environment.Here,α-acetolactate synthase andα-acetolactate decarboxylase from Bacillus subtilis 168 were co-expressed in H.bluephagenesis to produce acetoin from pyruvate.After reaction condition optimization and further increase ofα-acetolactate decarboxylase expression,acetoin production and yield were significantly enhanced to 223.4 mmol·L^(-1) and 0.491 mol·mol^(-1) from 125.4 mmol·L^(-1) and 0.333 mol·mol^(-1),respectively.Finally,the highest titer of 974.3 mmol·L^(-1)(85.84 g·L^(-1))of acetoin was accumulated from 2143.4 mmol·L^(-1)(188.6 g·L^(-1))of pyruvic acid within 8 h in fed-batch bioconversion under optimal reaction conditions.Moreover,the reusability of the cell catalysis was also tested,and the result illustrated that the whole-cell catalysis obtained 433.3,440.2,379.0,442.8 and 339.4 mmol·L^(-1)(38.2,38.8,33.4,39.0 and 29.9 g·L^(-1))acetoin in five repeated cycles under the same conditions.This work therefore provided an efficient H.bluephagenesis whole-cell catalysis with a broad development prospect in biosynthesis of acetoin.
基金financially supported by the National Natural Science Foundation of China(NSFC)(22007083)Zhejiang Provincial Innovation Center of Advanced Textile Technology and the Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University(KYY2022004C)the Fundamental Research Funds of Shengzhou Innovation Research Institute of Zhejiang SciTech University(SYY2023B000004)
文摘Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catalysts is more cost-effective.However,in the process of whole-cell catalysis,heat treatment is often necessary due to the high optimum temperature of the enzyme.To enable efficient industrial application of whole-cell catalysis,an environmental friendly heating approach is highly desired.Inspired by the light harvest by blackbody materials,in this paper,we introduced a photothermal approach for harnessing the photon energy for enhanced whole-cell catalysis.A blackbody porous sponge(BPS)with excellent photothermal conversion efficiency was prepared as a bioreactor.Escherichia coli expressed with a thermophilic enzyme(β-glucosidase)was utilized as a model whole-cell catalyst.Moreover,the photothermal properties of the BPS and lightassisted whole-cell catalysis were systematically investigated,demonstrating promising application prospects.
基金supported by the National Natural Science Foundation of China,Nos. 31872765 and 81790642 (to ZFW)a grant from the Shanghai Municipal Science and Technology Major Project,No. 2018SHZDZX01 (to ZFW)+1 种基金ZJ LabShanghai Center for Brain Science and Brain-Inspired Technology
文摘Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma,which is the leading cause of irreversible blindness.Disruption of Ca^(2+)homeostasis plays an important role in glaucoma.Voltage-gated Ca^(2+)channel blockers have been shown to improve vision in patients with glaucoma.However,whether and how voltage-gated Ca^(2+)channels are involved in retinal ganglion cell apoptotic death are largely unknown.In this study,we found that total Ca^(2+)current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma,as determined by whole-cell patch-clamp electrophysiological recordings.Further analysis showed that L-type Ca^(2+)currents were downregulated while T-type Ca^(2+)currents were upregulated at the later stage of glaucoma.Western blot assay and immunofluorescence experiments confirmed that expression of the Ca_(V)1.2 subunit of L-type Ca^(2+)channels was reduced and expression of the Ca_(V)3.3 subunit of T-type Ca^(2+)channels was increased in retinas of the chronic ocular hypertension model.Soluble tumor necrosis factor-α,an important inflammatory factor,inhibited the L-type Ca^(2+)current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca^(2+)current.These changes were blocked by the tumor necrosis factor-αinhibitor XPro1595,indicating that both types of Ca^(2+)currents may be mediated by soluble tumor necrosis factor-α.The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α.TUNEL assays revealed that mibefradil,a T-type calcium channel blocker,reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension.These results suggest that T-type Ca^(2+)channels are involved in disrupted Ca^(2+)homeostasis and apoptosis of retinal ganglion cells in glaucoma,and application of T-type Ca^(2+)channel blockers,especially a specific CaV3.3 blocker,may be a potential strategy for the treatment of glaucoma.