The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utili...The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utilize 3D physical seismic modeling experiments. A 3D channel sand body physical seismic model is constructed and two acquisition systems are designed with wide azimuth (16 lines) and narrow azimuth (8 lines) to model 3D seismic data acquisition and processing seismic work flows. From analysis of migrated time slice data with high quality and small size, we conclude that when the overlying layers are smooth and lateral velocities have little change, both wide and narrow azimuth observation systems in 3D acquisition can be used for obtaining high precision imaging and equivalent resolution of the channel sand body.展开更多
Acquisition footprint is a new concept to describe the seismic noise in three-dimensional seismic exploration and it is closely related to geometry and observation shuttering. At present, the study on acquisition foot...Acquisition footprint is a new concept to describe the seismic noise in three-dimensional seismic exploration and it is closely related to geometry and observation shuttering. At present, the study on acquisition footprints has become a hot spot. In partnership with the Dagang Oilfield, we used the channel sand body seismic physical model to study the characteristics of wide/narrow azimuth acquisition footprints and analyzed and compared the two types of footprints and their effects on target imaging. In addition, the footprints caused by data processing of the normal moveout offset (NMO) stretching aberration were discussed. These footprints are located only in the shallow or middle layer in the time slice, and possibly affect the imaging of shallow target layers, and have no influence on deep target imaging. Seismic physical modeling has its advantages in the study of acquisition footprints.展开更多
AIM: To assess the clinical effects and the morphological grade of nerve compression.METHODS: In a prospective single-center randomized, open study we assessed the clinical effects and the morphological grade of nerve...AIM: To assess the clinical effects and the morphological grade of nerve compression.METHODS: In a prospective single-center randomized, open study we assessed the clinical effects and the morphological grade of nerve compression during 20 min of either a silicon ring(group A) or pneumatic tourniquet(group B) placement variantly on the upper non-dominant limb in 14 healthy human volunteers. Before and during compression, the median and radial nerves were visualized in both groups by 3 Tesla MR imaging, using high resolutional(2.5 mm slice thickness) axial T2-weighted sequences. RESULTS: In group A, Visual analog pain scale was 5.4 ± 2.2 compared to results of group B, 2.9 ± 2.5, showing a significant difference(P = 0.028). FPS levels in group A were 2.6 ± 0.9 compared to levels in group B 1.6 ± 1, showing a significant difference(P = 0.039). Results related to measureable effect on median and radial nerve function were equal in both groups. No undue pressure signs on the skin, redness or nerve damage occurred in either group. There was no significant difference in the diameters of the nerves without and under compression in either group on T2 weighted images.CONCLUSION: Based on our results, no differences between narrow and wide tourniquets were identified. Silicon ring tourniquets can be regarded as safe for short time application.展开更多
Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly...Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.展开更多
We propose a narrow-band birefringent filter and its application in wide color gamut.The birefringent filter consists of five phase retarders and two polarizers,and it has both narrow band and high transmittance.In th...We propose a narrow-band birefringent filter and its application in wide color gamut.The birefringent filter consists of five phase retarders and two polarizers,and it has both narrow band and high transmittance.In the experiment,we fabricate the birefringent filter using quartz phase retarders and polarizers,and apply it in serval different displays.The color gamuts of displays are enhanced more than 30%NTSC(National Television System Committee),and the widest color gamuts that have been obtained are 126%NTSC in liquid crystal displays and 138%NTSC in organic light-emitting devices.Moreover,the deep blue light in spectrum of display can be reduced using the birefringent filter.The birefringent filter can be an efficient element to achieve wide color gamut display.展开更多
基金supported by the National Basic Research Program (the 973 Program, No. 2007CB209601).
文摘The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utilize 3D physical seismic modeling experiments. A 3D channel sand body physical seismic model is constructed and two acquisition systems are designed with wide azimuth (16 lines) and narrow azimuth (8 lines) to model 3D seismic data acquisition and processing seismic work flows. From analysis of migrated time slice data with high quality and small size, we conclude that when the overlying layers are smooth and lateral velocities have little change, both wide and narrow azimuth observation systems in 3D acquisition can be used for obtaining high precision imaging and equivalent resolution of the channel sand body.
基金Heterogeneous formation geophysical response characteristics (973 Program, subject number: 2007CB209601)Continental reservoir seismic physical model (CNPC Fundamental Research Projects, subject number: 06A10102)
文摘Acquisition footprint is a new concept to describe the seismic noise in three-dimensional seismic exploration and it is closely related to geometry and observation shuttering. At present, the study on acquisition footprints has become a hot spot. In partnership with the Dagang Oilfield, we used the channel sand body seismic physical model to study the characteristics of wide/narrow azimuth acquisition footprints and analyzed and compared the two types of footprints and their effects on target imaging. In addition, the footprints caused by data processing of the normal moveout offset (NMO) stretching aberration were discussed. These footprints are located only in the shallow or middle layer in the time slice, and possibly affect the imaging of shallow target layers, and have no influence on deep target imaging. Seismic physical modeling has its advantages in the study of acquisition footprints.
基金Volunteers honorary in the amount of 3.000 USD was supported by private funds of Kovar FMHemaClear~(TM) devices were provided by OHK Medical Device,Haifa,Israel
文摘AIM: To assess the clinical effects and the morphological grade of nerve compression.METHODS: In a prospective single-center randomized, open study we assessed the clinical effects and the morphological grade of nerve compression during 20 min of either a silicon ring(group A) or pneumatic tourniquet(group B) placement variantly on the upper non-dominant limb in 14 healthy human volunteers. Before and during compression, the median and radial nerves were visualized in both groups by 3 Tesla MR imaging, using high resolutional(2.5 mm slice thickness) axial T2-weighted sequences. RESULTS: In group A, Visual analog pain scale was 5.4 ± 2.2 compared to results of group B, 2.9 ± 2.5, showing a significant difference(P = 0.028). FPS levels in group A were 2.6 ± 0.9 compared to levels in group B 1.6 ± 1, showing a significant difference(P = 0.039). Results related to measureable effect on median and radial nerve function were equal in both groups. No undue pressure signs on the skin, redness or nerve damage occurred in either group. There was no significant difference in the diameters of the nerves without and under compression in either group on T2 weighted images.CONCLUSION: Based on our results, no differences between narrow and wide tourniquets were identified. Silicon ring tourniquets can be regarded as safe for short time application.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 41306087), Public Science and Technology Research Funds Projects of Ocean (Grant No. 201505019)
文摘Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.
基金the National Natural Science Foundation of China(Grant Nos.61475042,11304074,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048).
文摘We propose a narrow-band birefringent filter and its application in wide color gamut.The birefringent filter consists of five phase retarders and two polarizers,and it has both narrow band and high transmittance.In the experiment,we fabricate the birefringent filter using quartz phase retarders and polarizers,and apply it in serval different displays.The color gamuts of displays are enhanced more than 30%NTSC(National Television System Committee),and the widest color gamuts that have been obtained are 126%NTSC in liquid crystal displays and 138%NTSC in organic light-emitting devices.Moreover,the deep blue light in spectrum of display can be reduced using the birefringent filter.The birefringent filter can be an efficient element to achieve wide color gamut display.