根据来自监视控制与数据采集(supervisory control and data acquisition,SCADA)系统和相量测量单元(phasor measurement unit,PMU)的数据特点,提出了一种基于SCADA/PMU混合量测的广域动态实时状态估计方法,该方法充分利用了各节点间电...根据来自监视控制与数据采集(supervisory control and data acquisition,SCADA)系统和相量测量单元(phasor measurement unit,PMU)的数据特点,提出了一种基于SCADA/PMU混合量测的广域动态实时状态估计方法,该方法充分利用了各节点间电压变化的相互联系,通过SCADA系统提供的初始值和安装PMU的节点的电压量测可简单地获得其他未安装PMU节点的电压相量。该方法有效地解决了在PMU配置不足的情况下如何观测电网状态以及如何在动态过程下实时观测电网。最后,通过对新英格兰10机39节点系统的多种故障进行仿真,验证了该方法的有效性和准确性。展开更多
The paper proposes an approach to transmit electric power system dynamics in the SCADA. With the prevalent application of digital substation automation system, it is feasible for the remote terminal units (RTUs) to co...The paper proposes an approach to transmit electric power system dynamics in the SCADA. With the prevalent application of digital substation automation system, it is feasible for the remote terminal units (RTUs) to collect phasors within a substation. However, limited communication capacity remains the bottleneck that prevents SCADA from transmitting system dynamics. This paper proposes to compress dynamics data with curve fitting in the RTUs and reconstruct the dynamics in the SCADA server for reducing communication demand. Dispatchers in the control center can thus get system dynamics with a delay of several seconds. Simulation result shows that for a power system under disturbance with short-circuit that once occurred and was cleared, the SCADA can approximate the original dynamics with satisfying precision using limited degree polynomial fitting. The approach is highly scalable and adaptable, and can be implemented on existing communication infrastructure with a few software modifications. The approach has extensive application potential.展开更多
文摘根据来自监视控制与数据采集(supervisory control and data acquisition,SCADA)系统和相量测量单元(phasor measurement unit,PMU)的数据特点,提出了一种基于SCADA/PMU混合量测的广域动态实时状态估计方法,该方法充分利用了各节点间电压变化的相互联系,通过SCADA系统提供的初始值和安装PMU的节点的电压量测可简单地获得其他未安装PMU节点的电压相量。该方法有效地解决了在PMU配置不足的情况下如何观测电网状态以及如何在动态过程下实时观测电网。最后,通过对新英格兰10机39节点系统的多种故障进行仿真,验证了该方法的有效性和准确性。
基金Supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB219701)National Natural Science Foundation of China (Grant No. 50595414)Youth Scientific and Technological Innovation Project of CSEE
文摘The paper proposes an approach to transmit electric power system dynamics in the SCADA. With the prevalent application of digital substation automation system, it is feasible for the remote terminal units (RTUs) to collect phasors within a substation. However, limited communication capacity remains the bottleneck that prevents SCADA from transmitting system dynamics. This paper proposes to compress dynamics data with curve fitting in the RTUs and reconstruct the dynamics in the SCADA server for reducing communication demand. Dispatchers in the control center can thus get system dynamics with a delay of several seconds. Simulation result shows that for a power system under disturbance with short-circuit that once occurred and was cleared, the SCADA can approximate the original dynamics with satisfying precision using limited degree polynomial fitting. The approach is highly scalable and adaptable, and can be implemented on existing communication infrastructure with a few software modifications. The approach has extensive application potential.