An airborne pushbroom hyperspectrai imager (APHI) with wide field (42° field of view) is presented. It is composed of two 22° field of view (FOV) imagers and can provide 1304 pixels in spatial dimensio...An airborne pushbroom hyperspectrai imager (APHI) with wide field (42° field of view) is presented. It is composed of two 22° field of view (FOV) imagers and can provide 1304 pixels in spatial dimension, 124 bands in spectral dimension in one frame. APHI has a bandwidth ranging from 400 to 900 nm. The spectral resolution is 5 nm and the spatial resolution is 0.6 m at 1000-m height. The implementation of this system is helpful to overcome the restriction of FOV in pushbroom hyperspectral imaging in a more feasible way. The electronic and optical designs axe also introduced in detail.展开更多
Optical imaging has served as a primary method to collect information about biosystems across scales—from functionalities of tissues to morphological structures of cells and even at biomolecular levels.However,to ade...Optical imaging has served as a primary method to collect information about biosystems across scales—from functionalities of tissues to morphological structures of cells and even at biomolecular levels.However,to adequately characterize a complex biosystem,an imaging system with a number of resolvable points,referred to as a space-bandwidth product(SBP),in excess of one billion is typically needed.Since a gigapixel-scale far exceeds the capacity of current optical imagers,compromises must be made to obtain either a low spatial resolution or a narrow field-of-view(FOV).The problem originates from constituent refractive optics—the larger the aperture,the more challenging the correction of lens aberrations.Therefore,it is impractical for a conventional optical imaging system to achieve an SBP over hundreds of millions.To address this unmet need,a variety of high-SBP imagers have emerged over the past decade,enabling an unprecedented resolution and FOV beyond the limit of conventional optics.We provide a comprehensive survey of high-SBP imaging techniques,exploring their underlying principles and applications in bioimaging.展开更多
被动成像广域空中监视(Wide Area Airborne Surveillance,WAAS)系统因其良好的隐蔽性和动态监视的实时性、持久性及大面积覆盖,已成为情报监视侦察的重要工具,广泛应用于军事、民用领域。文章结合典型被动成像广域空中监视系统(如自动...被动成像广域空中监视(Wide Area Airborne Surveillance,WAAS)系统因其良好的隐蔽性和动态监视的实时性、持久性及大面积覆盖,已成为情报监视侦察的重要工具,广泛应用于军事、民用领域。文章结合典型被动成像广域空中监视系统(如自动实时地面全部署侦察成像系统ARGUS-IS)的特点,从光电传感器设计、数据传输与信息处理等方面阐述被动成像WAAS的系统特点及关键技术环节;重点分析了大视场高分辨率的实现方式、海量数据传输与存储、数据智能分析等制约被动成像WAAS性能的瓶颈技术,为被动成像WAAS的研制与应用提供了参考。展开更多
基金This work was supported by the National "863" High Technology Project of China (No. 2001AA131019).
文摘An airborne pushbroom hyperspectrai imager (APHI) with wide field (42° field of view) is presented. It is composed of two 22° field of view (FOV) imagers and can provide 1304 pixels in spatial dimension, 124 bands in spectral dimension in one frame. APHI has a bandwidth ranging from 400 to 900 nm. The spectral resolution is 5 nm and the spatial resolution is 0.6 m at 1000-m height. The implementation of this system is helpful to overcome the restriction of FOV in pushbroom hyperspectral imaging in a more feasible way. The electronic and optical designs axe also introduced in detail.
基金supported partially by the National Institutes of Health(R01EY029397,R35GM128761)the National Science Foundation(1652150)+1 种基金support from the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2019R1A6A3A03031505)support from the National Science Foundation(1846784)。
文摘Optical imaging has served as a primary method to collect information about biosystems across scales—from functionalities of tissues to morphological structures of cells and even at biomolecular levels.However,to adequately characterize a complex biosystem,an imaging system with a number of resolvable points,referred to as a space-bandwidth product(SBP),in excess of one billion is typically needed.Since a gigapixel-scale far exceeds the capacity of current optical imagers,compromises must be made to obtain either a low spatial resolution or a narrow field-of-view(FOV).The problem originates from constituent refractive optics—the larger the aperture,the more challenging the correction of lens aberrations.Therefore,it is impractical for a conventional optical imaging system to achieve an SBP over hundreds of millions.To address this unmet need,a variety of high-SBP imagers have emerged over the past decade,enabling an unprecedented resolution and FOV beyond the limit of conventional optics.We provide a comprehensive survey of high-SBP imaging techniques,exploring their underlying principles and applications in bioimaging.
文摘被动成像广域空中监视(Wide Area Airborne Surveillance,WAAS)系统因其良好的隐蔽性和动态监视的实时性、持久性及大面积覆盖,已成为情报监视侦察的重要工具,广泛应用于军事、民用领域。文章结合典型被动成像广域空中监视系统(如自动实时地面全部署侦察成像系统ARGUS-IS)的特点,从光电传感器设计、数据传输与信息处理等方面阐述被动成像WAAS的系统特点及关键技术环节;重点分析了大视场高分辨率的实现方式、海量数据传输与存储、数据智能分析等制约被动成像WAAS性能的瓶颈技术,为被动成像WAAS的研制与应用提供了参考。