期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall 被引量:34
1
作者 CUI Yi-fei ZHOU Xiao-jun GUO Chao-xu 《Journal of Mountain Science》 SCIE CSCD 2017年第3期417-431,共15页
The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine parti... The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particleaccumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation. 展开更多
关键词 wide grading unconsolidated soil Fine particle migration Soil failure LANDSLIDE Debris flow initiation Flume test Heavy rainfall
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部