Ammonium-ion batteries are promising solutions for large-scale energy storage systems owing to their costeffectiveness,safety,and sustainability.Herein,we propose an aqueous ammonium-ion battery based on an organic po...Ammonium-ion batteries are promising solutions for large-scale energy storage systems owing to their costeffectiveness,safety,and sustainability.Herein,we propose an aqueous ammonium-ion battery based on an organic poly(1,5-naphthalenediamine)anode and an inorganic Prussian blue cathode in 19 M(M:mol kg^(-1))CH3COONH_(4)electrolyte.Its operation involves a reversible coordination reaction(C=N/C-N-conversion)in the anode and the NH_(4)^(+)insertion/extraction reaction in the cathode,along with NH_(4)^(+)acting as the charge carrier in a rocking-chair battery.Benefiting from the fast kinetics and stability of both electrodes,this aqueous ammoniumion battery shows an excellent rate capability and long cycle stability for 500 cycles.Moreover,an energy density as high as 31.8 Wh kg^(-1) can be achieved,based on the total mass of the cathode and anode.Surprisingly,this aqueous ammonium-ion battery works well over a wide temperature range from-40 to 80℃.This work will provide new opportunities to build wide-temperature aqueous batteries and broaden the horizons for large-scale energy storage systems.展开更多
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit...Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.展开更多
Electroabsorption modulators combining Franz-Keldysh effect and quantum confined Stark effect have been mono-lithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well in...Electroabsorption modulators combining Franz-Keldysh effect and quantum confined Stark effect have been mono-lithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well intermixing method. Superior characteristics such as extinction ratio and temperature insensitivity have been demonstrated at wide temperature ranges.展开更多
Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device pe...Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device performance,such as perovskite solar cells(PSCs).Herein,we successfully enhanced the electric properties and morphology of phenyl-C61-butyric acid methyl ester(PCBM)by n-doping it with a benzimidazoline derivative,9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine(JLBI-H)via a solution process.We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K,which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures.With the JLBI-H-doped PCBM,we improved the efficiency from 17.9%to 19.8%,along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.展开更多
基金The authors acknowledge funding support from the National Key Research and Development Program of China(2018YFE0201702)the National Natural Science Foundation of China(21975052,21935003,21805126)Chenguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(19CG01).
文摘Ammonium-ion batteries are promising solutions for large-scale energy storage systems owing to their costeffectiveness,safety,and sustainability.Herein,we propose an aqueous ammonium-ion battery based on an organic poly(1,5-naphthalenediamine)anode and an inorganic Prussian blue cathode in 19 M(M:mol kg^(-1))CH3COONH_(4)electrolyte.Its operation involves a reversible coordination reaction(C=N/C-N-conversion)in the anode and the NH_(4)^(+)insertion/extraction reaction in the cathode,along with NH_(4)^(+)acting as the charge carrier in a rocking-chair battery.Benefiting from the fast kinetics and stability of both electrodes,this aqueous ammoniumion battery shows an excellent rate capability and long cycle stability for 500 cycles.Moreover,an energy density as high as 31.8 Wh kg^(-1) can be achieved,based on the total mass of the cathode and anode.Surprisingly,this aqueous ammonium-ion battery works well over a wide temperature range from-40 to 80℃.This work will provide new opportunities to build wide-temperature aqueous batteries and broaden the horizons for large-scale energy storage systems.
基金the financial support from the National Natural Science Foundation of China(51972156,52072378,52102054 and 51927803)the National Key R&D Program of China(2022YFB3803400,2021YFB3800301)+2 种基金the Shenyang Science and Technology Program(22-322-3-19)the Youth Fund of the Education Department of Liaoning Province(LJKQZ20222324)the Outstanding Youth Fund of University of Science and Technology Liaoning(2023YQ11).
文摘Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60736036,60706009,60777021 and 60702006)the National Basic Research Program of China (Grant Nos. 2006CB604901 and 2006CB604902)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z419,2007AA03Z417 and 2009AA03Z442)
文摘Electroabsorption modulators combining Franz-Keldysh effect and quantum confined Stark effect have been mono-lithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well intermixing method. Superior characteristics such as extinction ratio and temperature insensitivity have been demonstrated at wide temperature ranges.
基金National Key Research and Development Plan,Grant/Award Number:2019YFE0107200National Natural Science Foundation of China,Grant/Award Numbers:22075221,52002302,91963209+4 种基金Key Research and Development Project of Shanxi Province,Grant/Award Number:202202060301003Hubei Provincial Natural Science Foundation of China,Grant/Award Number:2022CFB1000Knowledge Innovation Program of Wuhan-Shuguang Project,Grant/Award Number:2023010201020367State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology),Grant/Award Number:2022-KF-17Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science,ICT,and Future Planning,Grant/Award Numbers:2019K1A3A1A61091347,2021M3H4A1A02051234。
文摘Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device performance,such as perovskite solar cells(PSCs).Herein,we successfully enhanced the electric properties and morphology of phenyl-C61-butyric acid methyl ester(PCBM)by n-doping it with a benzimidazoline derivative,9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine(JLBI-H)via a solution process.We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K,which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures.With the JLBI-H-doped PCBM,we improved the efficiency from 17.9%to 19.8%,along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.