A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and...A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and ion conductivity,simultaneously under a wide pH range applications.Spectral characterizations and theoretical calculation indicate that the non-solvent induces the chain segment configuration and eventually leads to polymer-polymer phase separation,thus forming hierarchical porous core-shell structure.Benefiting from this structure,an acidic vanadium flow battery(VFB)with such a membrane shows excellent performance over 400 cycles with an energy efficiency(EE)of above 81%at current density of 120 mA cm^(-2) and an alkaline zinc-iron flow battery(AZIFB)delivers a cycling stability for more than 200 cycles at 160 mA cm^(-2),along with an EE of above 82%.This paper provides a cost-effective and simple way to fabricate membranes with high performance for variety of energyrelated devices.展开更多
Photocatalytic Fenton reactions combined the advantages from both photocatalysis and Fenton reaction in mineralizing organic pollutants. The key problems are the efficiency and recycling stability. Herein, we reported...Photocatalytic Fenton reactions combined the advantages from both photocatalysis and Fenton reaction in mineralizing organic pollutants. The key problems are the efficiency and recycling stability. Herein, we reported a novel Fe_(2)O_(3)/TiO_(2)/reduced graphene oxide(FTG) nanocomposite synthesized by a facile solvothermal method. The TiO_(2)in FTG degraded organic pollutants and mineralized intermediates via photocatalysis under visible light irradiation, which could also promote Fenton reaction by accelerating Fe^(3+)-Fe^(2+)recycle. Meanwhile, the Fe_(2)O_(3)rapidly degraded organic pollutants via Fenton reactions, which also promoted photocatalysis by enhancing visible light absorbance and diminishing photoelectronhole recombination. The high distribution of TiO_(2)and Fe_(2)O_(3)on rGO, together with their strong interaction resulted in enhanced synergetic cooperation between photocatalysis and Fenton reactions, leading to the high mineralization efficiency of organic pollutants. More importantly, it could also inhibit the leaching of Fe species, leading to the long lifetime of FTG during photocatalytic Fenton reactions in a wide pH range from 3.4 to 9.2.展开更多
A new solvent polymeric membrane (SPM)pH2sensor based on 4,4'-bis (N, N-didecylamino)methyl)azobenzene as neutral carricr has been reported. It has excellent pH response characteristics with the linear response ra...A new solvent polymeric membrane (SPM)pH2sensor based on 4,4'-bis (N, N-didecylamino)methyl)azobenzene as neutral carricr has been reported. It has excellent pH response characteristics with the linear response range (1.7—13.2)much wider than that of similar SPM pH sensors reported so far. The sensor has a theoretical Nernstian response of 57.4+0.2V/pH(at 20℃)without super—Nernstian response phenomenon.展开更多
A crystalline polyferric sulfate(PFS) adsorbent was synthesized by oxidizing and precipitating ferrous ions in air atmospheric conditions. The morphology, structure, specific surface area(SSA), and adsorptive efficacy...A crystalline polyferric sulfate(PFS) adsorbent was synthesized by oxidizing and precipitating ferrous ions in air atmospheric conditions. The morphology, structure, specific surface area(SSA), and adsorptive efficacy of the adsorbent to As(Ⅲ) were characterized by scanning electron microscope(SEM) and transmission electron microscopy(TEM) images, X-ray diffraction(XRD) patterns, Fourier-transform infrared(FTIR) spectra, BET SSA analyses, and adsorption experiments. The adsorbent showed a near-spherical aggregate structure and had good crystallinity. A significant amount of α-goethite co-precipitated with PFS in the case of the initial ferrous concentration of 1 mol/L and increased SSA of the adsorbent. The stability region of ferric compounds in the process was drawn and applied to analyze the iron behavior during the synthesis. The adsorption of As(Ⅲ) in high As(Ⅲ)-containing solutions fitted the Langmuir isotherm model adequately. The absorbent with co-precipitation of α-goethite showed good adsorbability for As(Ⅲ) and good filtering performance in the high As(Ⅲ)-containing solution of 10–100 mg/L under acidic, neutral, and alkaline conditions(pH 2.09–9.01). After the adsorption process, the stability of the residues bearing As(Ⅲ) was evaluated by toxic characteristic leaching procedure(TCLP) tests. The results indicated that the residues were extremely stable, and the concentrations of arsenic in the leaching solutions were less than 0.01 mg/L.展开更多
In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values...In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values.The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from2.5 to 9.3.The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP.The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5,4.5,7.0 and 8.5 which involved a wide pH environment in body fluids.The limit of detection(LOD)for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5.In addition,the sensitive determination of ATP was also achieved by adding copper ions(Cu^2+).The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions.展开更多
It is of vital importance to design efficient and low-cost bifunctional catalysts for the electrochemical water splitting under alkaline and neutral pH conditions.In this work,we report an efficient and stable NiCo_(2...It is of vital importance to design efficient and low-cost bifunctional catalysts for the electrochemical water splitting under alkaline and neutral pH conditions.In this work,we report an efficient and stable NiCo_(2)S_(4)/N,S co-doped reduced graphene oxide(NCS/NS-rGO)electrocatalyst for water splitting,in which NCS microspheres are composed of one-dimentional(1D)nanorods grown homogeneously on the surface of NS-rGOs).The synergetic effect,abundant active sites,and hybridization of NCS/NS-rGO endow their outstanding electrocatalytic performance for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in both alkaline and neutral conditions.Furthermore,NCS/NS-rGO employed as both anode and cathode in a two-electrode alkaline and neutral system electrolyzers deliver 10 mA/cm^(2) with the low cell voltage of 1.58 V in alkaline and 1.91 V in neutral condition.These results illustrate the rational design of carbon-supported nickel-cobalt based bifunctional materials for practical water splitting over a wide pH range.展开更多
基金the financial support from NSFC(21925804,U1808209 and 21908214)CAS Engineering Laboratory for Electrochemical Energy Storage,CAS,STS program.Major scientific and technological innovation project of Shandong(2018YFJH0106)+1 种基金the CAS(DNL201910)Youth Innovation Promotion Association CAS。
文摘A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and ion conductivity,simultaneously under a wide pH range applications.Spectral characterizations and theoretical calculation indicate that the non-solvent induces the chain segment configuration and eventually leads to polymer-polymer phase separation,thus forming hierarchical porous core-shell structure.Benefiting from this structure,an acidic vanadium flow battery(VFB)with such a membrane shows excellent performance over 400 cycles with an energy efficiency(EE)of above 81%at current density of 120 mA cm^(-2) and an alkaline zinc-iron flow battery(AZIFB)delivers a cycling stability for more than 200 cycles at 160 mA cm^(-2),along with an EE of above 82%.This paper provides a cost-effective and simple way to fabricate membranes with high performance for variety of energyrelated devices.
基金supported by the National Key Research and Development Program of China (No.2020YFA0211004)the National Natural Science Foundation of China (Nos.22176128 and 21876114)+4 种基金the Program of Shanghai Academic Research Leader (No. 21XD1422800)Shanghai Government (Nos. 19DZ1205102 and 19160712900)Chinese Education Ministry Key Laboratory and International Joint Laboratory on Resource Chemistry, and Shanghai Eastern Scholar Program, “111 Innovation and Talent Recruitment Base on Photochemical and Energy Materials” (No. D18020)Shanghai Engineering Research Center of Green Energy Chemical Engineering (No. 18DZ2254200)Shanghai Frontiers Science Center of Biomimetic Catalysis。
文摘Photocatalytic Fenton reactions combined the advantages from both photocatalysis and Fenton reaction in mineralizing organic pollutants. The key problems are the efficiency and recycling stability. Herein, we reported a novel Fe_(2)O_(3)/TiO_(2)/reduced graphene oxide(FTG) nanocomposite synthesized by a facile solvothermal method. The TiO_(2)in FTG degraded organic pollutants and mineralized intermediates via photocatalysis under visible light irradiation, which could also promote Fenton reaction by accelerating Fe^(3+)-Fe^(2+)recycle. Meanwhile, the Fe_(2)O_(3)rapidly degraded organic pollutants via Fenton reactions, which also promoted photocatalysis by enhancing visible light absorbance and diminishing photoelectronhole recombination. The high distribution of TiO_(2)and Fe_(2)O_(3)on rGO, together with their strong interaction resulted in enhanced synergetic cooperation between photocatalysis and Fenton reactions, leading to the high mineralization efficiency of organic pollutants. More importantly, it could also inhibit the leaching of Fe species, leading to the long lifetime of FTG during photocatalytic Fenton reactions in a wide pH range from 3.4 to 9.2.
基金Project supported by the National Natural Science Foundation of China partially by Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Academia Sinica.
文摘A new solvent polymeric membrane (SPM)pH2sensor based on 4,4'-bis (N, N-didecylamino)methyl)azobenzene as neutral carricr has been reported. It has excellent pH response characteristics with the linear response range (1.7—13.2)much wider than that of similar SPM pH sensors reported so far. The sensor has a theoretical Nernstian response of 57.4+0.2V/pH(at 20℃)without super—Nernstian response phenomenon.
基金financially supported by the National Natural Science Foundation of China(No.51574285)
文摘A crystalline polyferric sulfate(PFS) adsorbent was synthesized by oxidizing and precipitating ferrous ions in air atmospheric conditions. The morphology, structure, specific surface area(SSA), and adsorptive efficacy of the adsorbent to As(Ⅲ) were characterized by scanning electron microscope(SEM) and transmission electron microscopy(TEM) images, X-ray diffraction(XRD) patterns, Fourier-transform infrared(FTIR) spectra, BET SSA analyses, and adsorption experiments. The adsorbent showed a near-spherical aggregate structure and had good crystallinity. A significant amount of α-goethite co-precipitated with PFS in the case of the initial ferrous concentration of 1 mol/L and increased SSA of the adsorbent. The stability region of ferric compounds in the process was drawn and applied to analyze the iron behavior during the synthesis. The adsorption of As(Ⅲ) in high As(Ⅲ)-containing solutions fitted the Langmuir isotherm model adequately. The absorbent with co-precipitation of α-goethite showed good adsorbability for As(Ⅲ) and good filtering performance in the high As(Ⅲ)-containing solution of 10–100 mg/L under acidic, neutral, and alkaline conditions(pH 2.09–9.01). After the adsorption process, the stability of the residues bearing As(Ⅲ) was evaluated by toxic characteristic leaching procedure(TCLP) tests. The results indicated that the residues were extremely stable, and the concentrations of arsenic in the leaching solutions were less than 0.01 mg/L.
基金the National Natural Science Foundation of China(Nos.21701015,61975214,21811530054,61671435)Beijing Natural Science Foundation(No.4202075)the National Key R&D Program(No.2018YFC0115500)。
文摘In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values.The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from2.5 to 9.3.The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP.The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5,4.5,7.0 and 8.5 which involved a wide pH environment in body fluids.The limit of detection(LOD)for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5.In addition,the sensitive determination of ATP was also achieved by adding copper ions(Cu^2+).The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions.
基金supported by the National Natural Science Foundation of China(Nos.51962032,61704114,and 51764049)the Youth Innovative Talents Cultivation Fund,Shihezi University(No.KX01480109)the Opening Project of The Research Center for Material Chemical Engineering Technology of Xinjiang Bingtuan(No.2017BTRC007).
文摘It is of vital importance to design efficient and low-cost bifunctional catalysts for the electrochemical water splitting under alkaline and neutral pH conditions.In this work,we report an efficient and stable NiCo_(2)S_(4)/N,S co-doped reduced graphene oxide(NCS/NS-rGO)electrocatalyst for water splitting,in which NCS microspheres are composed of one-dimentional(1D)nanorods grown homogeneously on the surface of NS-rGOs).The synergetic effect,abundant active sites,and hybridization of NCS/NS-rGO endow their outstanding electrocatalytic performance for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in both alkaline and neutral conditions.Furthermore,NCS/NS-rGO employed as both anode and cathode in a two-electrode alkaline and neutral system electrolyzers deliver 10 mA/cm^(2) with the low cell voltage of 1.58 V in alkaline and 1.91 V in neutral condition.These results illustrate the rational design of carbon-supported nickel-cobalt based bifunctional materials for practical water splitting over a wide pH range.