To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materia...Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.展开更多
Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly...Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.展开更多
Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically li...Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.展开更多
A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and...A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and ion conductivity,simultaneously under a wide pH range applications.Spectral characterizations and theoretical calculation indicate that the non-solvent induces the chain segment configuration and eventually leads to polymer-polymer phase separation,thus forming hierarchical porous core-shell structure.Benefiting from this structure,an acidic vanadium flow battery(VFB)with such a membrane shows excellent performance over 400 cycles with an energy efficiency(EE)of above 81%at current density of 120 mA cm^(-2) and an alkaline zinc-iron flow battery(AZIFB)delivers a cycling stability for more than 200 cycles at 160 mA cm^(-2),along with an EE of above 82%.This paper provides a cost-effective and simple way to fabricate membranes with high performance for variety of energyrelated devices.展开更多
On the basis of survey of current land use situation in Changfeng County,this paper analyzed land use structure,trend and environment of structural adjustment. Besides,it explored county-wide land use structure mode,n...On the basis of survey of current land use situation in Changfeng County,this paper analyzed land use structure,trend and environment of structural adjustment. Besides,it explored county-wide land use structure mode,namely, " division + indicator + policy". Through reasonable distribution,it is expected to build proper land use structure framework,avoid passive situation of relying on policies simply,and bring into play stability keeping function of land use structure,so as to promote county-wide economic development,and bring into play countywide lever function of rural transition areas.展开更多
In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai ...In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.展开更多
The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The ne...The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.展开更多
In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are disc...In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are discussed. The results show that different tectonic units have different features of crustal velocity structures. In general, there are low velocity distributions in the crust in regions with strong tectonic activities, and the scales of low velocity distributions are related to the tectonic activities. The average velocities are relatively low in such regions. This reflects strong crustal deformation and the variations of states of matter in the crust resulting from strong tectonic movements. These regions are also seismically active zones frequented by strong earthquakes. Therefore, studying crustal velocity structures of these regions is of great importance to understanding crustal geodynamic process and seismogenic tectonic background.展开更多
This paper presents a method for structured scene modeling using micro stereo vision system with large field of view. The proposed algorithm includes edge detection with Canny detector, line fitting with principle axi...This paper presents a method for structured scene modeling using micro stereo vision system with large field of view. The proposed algorithm includes edge detection with Canny detector, line fitting with principle axis based approach, finding corresponding lines using feature based matching method, and 3D line depth computation.展开更多
We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC)along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data.This ...We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC)along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data.This profile extends from southwest Yan’an of central Shaanxi Province of China(109.47°E),across the southern Trans-North China Orogen(TNCO),the southwestern part of the North China Plain(NCP),the Luxi Uplift(LU)and the Sulu Orogen(SLO),ending at Qingdao City of Shandong Province,the eastern margin of China(120.12°E)along 36°N.We utilized reflectivity synthetic seismogram modeling of the active source data to develop 1-D velocity structures of the sub-blocks of the NCC.Our final model shows that the NCC crust varies remarkably among the tectonic units with different velocity structure features.Higher lower crustal velocity and Moho depth^42 km is a major feature of the crust beneath southern Ordos Blockt.The TNCO which is composed of Lyuliangshan Mountains(LM),Shanxi Graben(SXG)and Taihangshan Mountains(TM)shows dominant trans-orogenic features.The NCP shows a dominant thickening of sediments,sharp crust thinning with Moho depth^32 km and significant lower average velocity.The SLO and the LU shows a stratified crust,higher average velocity and crust thinning with Moho depth of^35 km.Our model shows the coincidence between the deep structure and the surface geology among all the tectonic sub-blocks of the NCC.展开更多
The Pearl River Mouth Basin (PRMB) covers an area of approximately 20× 104 km2.However,oil-gas fields detected in this area thus far are highly concentrated and controlled predominantly by second-order structur...The Pearl River Mouth Basin (PRMB) covers an area of approximately 20× 104 km2.However,oil-gas fields detected in this area thus far are highly concentrated and controlled predominantly by second-order structural belts,the seven largest of which aggregate proved oil reserves of 7.7× 108 m3,accounting for 86% of the total discovered reserve in the basin.These second-order structures have one common phenomenon:oil is contained in all traps present in them.In other words,they are all belt-wide petroliferous reservoirs.Research has identified eight types of second-order structural belts under two categories in the eastern PRMB.Their petroliferous properties are subject to three typical constraints:petroliferous properties of subsags hosting these structural belts,locations of these belts in the petroleum system,and availability of traps prior to the hydrocarbon expulsion and migration.The formation and distribution of oil reservoirs in these belts are characterized by subsag-belt integration and "three-in-one".The former indicates that sags and the second-order structural belts within the supply range of the sags constitute the basic units of hydrocarbon accumulations and are therefore inseparable.The latter indicates that a belt-wide petroliferous second-order structural belt always contains three important elements:hydrocarbon richness,effective pathway and pre-existing traps.展开更多
Longevity is regarded as the most important functional trait in cattle breeding with high economic value yet low heritability. In order to identify genomic regions associated with longevity, a genome wise association ...Longevity is regarded as the most important functional trait in cattle breeding with high economic value yet low heritability. In order to identify genomic regions associated with longevity, a genome wise association study was performed using data from 4887 Fleckvieh bulls and 33,556 SNPs after quality control. Single SNP regression was used for identification of important SNPs including eigenvectors as a means of correction for population structure. SNPs selected with a false discovery rate threshold of 0.05 and with local false discovery rate identified genomic regions associated with longevity which were subsequently cross checked with the National Center for Biotechnology Information (NCBI) database. This, to identify interesting genes in cattle and their homologue forms in other species. The most notable genes were SYT10 located on chromosome 5, ADAMTS3 on chromosome 6, NTRK2 on chromosome 8 and SNTG1 on chromosome 14 of the cattle genome. Several of the genes found have previously been associated with cattle fertility. Poor fertility is an important culling reason and thereby affects longevity in cattle. Several signals were located in regions sparse with described genes, which suggest that there might be several other non-identified genetic pathways for this important trait.展开更多
Genetic diversity, population structure, and genome-wide marker-trait association analyses were conducted on a special collection of 298 homozygous lettuce(Lactuca sativa L.) lines. Each of these lines was derived fro...Genetic diversity, population structure, and genome-wide marker-trait association analyses were conducted on a special collection of 298 homozygous lettuce(Lactuca sativa L.) lines. Each of these lines was derived from a single plant that had been genotyped with 384 SNP markers using LSGermOPA. They included 122 butterhead, 53 romaine, 63 crisphead, 53 leaf and 7 stem types. Genetic diversity among these plants was assessed by pairwise comparison based on 322 high-quality SNP markers selected from 384 SNPs. Only 258 unique genotypes were identified among the 298 lines because 26 pairs or small groups(a total of 66 lines) shared identical genotypes. The average genetic similarity coefficient(GS) among these unique genotypes was 63.9% with a range of 40.6% to 99.8%. A phylogenetic tree was constructed based on the genotypic data. The most likely number of populations was estimated to be two or six. Association analysis between the 322 SNP markers and 10 phenotypic traits using the 258 homozygous lines was performed by three different methods: single factor analysis, general linear model analysis, and mixed linear model analysis. Nine significant marker-trait associations(SMTAs) were detected at P < 0.0001 with all three methods and also when considering kinship and/or population structure for this collection, with five SMTAs for seed coat color, one for leaf undulation, two for leaf anthocyanin, and one for stem anthocyanin. These markers will be useful in marker-assisted selection after further validation with segregating populations.展开更多
High resolution traffic measurements from modern communications networks provide unique opportunities for developing and validating mathematical models for aggregate traffic, or WAN (wide area network) traffic. To exp...High resolution traffic measurements from modern communications networks provide unique opportunities for developing and validating mathematical models for aggregate traffic, or WAN (wide area network) traffic. To exploit these opportunities, this paper emphasized the need for structural model that takes into account specific physical feature of the underlying communication network structure. This approach is in sharp contrast to the traditional black box modeling methodology from this time series analysis that ignores, in general, specific physical structure. The paper demonstrated, in particular, how the proposed structural modeling approach provides a direct link between the observed self similarity characteristic of measured aggregate network traffic and the strong empirical evidence in favor of heavy tailed, infinite variance phenomena at the level of individual network connections.展开更多
Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multip...Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multiple-Input-Multiple-Output(MIMO)antenna for ultra-wideband(UWB)applications is presented.The design consists of four radiators that are orthogonally positioned and confined to a compact 40×40×0.8 mm3 space.The final antenna design uses an inverted L shape partial ground to produce an acceptable reflection coefficient(S11<−10 dB)in an entire UWB band(3.1–10.6)giga hertz(GHz).Moreover,the inter-element isolation has also been enhanced to>20 db for majority of the UWB band.The antenna was fabricated and tested with the vector network analyzer(VNA)and in an anechoic chamber for scattering parameters and radiation patterns.Furthermore,different MIMO diversity performance metrics are also measured to validate the proposed model.The simulation results and the experimental results from the constructed model agree quite well.The proposed antenna is compared with similar designs in recently published literature for various performance metrics.Because of its low envelope correlation coefficient(ECC<0.1),high diversity gain(DG>9.99 dB),peak gain of 4.6 dB,reduced channel capacity loss(CCL<0.4 b/s/Hz),and average radiation efficiency of over 85%,the proposed MIMO antenna is ideally suited for practical UWB applications.展开更多
In the past few years, genome-wide association study (GWAS) has made great successes in identifying genetic susceptibility loci underlying many complex diseases and traits. The findings provide important genetic ins...In the past few years, genome-wide association study (GWAS) has made great successes in identifying genetic susceptibility loci underlying many complex diseases and traits. The findings provide important genetic insights into understanding pathogenesis of diseases. In this paper, we present an overview of widely used approaches and strategies for analysis of GWAS, offered a general consideration to deal with GWAS data. The issues regarding data quality control, population structure, association analysis, multiple comparison and visual presentation of GWAS results are discussed; other advanced topics including the issue of missing heritability, meta-analysis, setbased association analysis, copy number variation analysis and GWAS cohort analysis are also briefly introduced.展开更多
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金supported by the National Natural Science Foundation of China(U21A20312,22172099,21975162,51902209)the Natural Science Foundation of Guangdong(2020A1515010840)the Shenzhen Science and Technology Program(SGDX20201103095802006,RCBS20200714114819161,JCYJ20190808111801674,JCYJ20200109105803806,RCYX20200714114535052)。
文摘Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 41306087), Public Science and Technology Research Funds Projects of Ocean (Grant No. 201505019)
文摘Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.
基金partially supported by the Gordon and Betty Moore Foundation Grant No.5722
文摘Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.
基金the financial support from NSFC(21925804,U1808209 and 21908214)CAS Engineering Laboratory for Electrochemical Energy Storage,CAS,STS program.Major scientific and technological innovation project of Shandong(2018YFJH0106)+1 种基金the CAS(DNL201910)Youth Innovation Promotion Association CAS。
文摘A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and ion conductivity,simultaneously under a wide pH range applications.Spectral characterizations and theoretical calculation indicate that the non-solvent induces the chain segment configuration and eventually leads to polymer-polymer phase separation,thus forming hierarchical porous core-shell structure.Benefiting from this structure,an acidic vanadium flow battery(VFB)with such a membrane shows excellent performance over 400 cycles with an energy efficiency(EE)of above 81%at current density of 120 mA cm^(-2) and an alkaline zinc-iron flow battery(AZIFB)delivers a cycling stability for more than 200 cycles at 160 mA cm^(-2),along with an EE of above 82%.This paper provides a cost-effective and simple way to fabricate membranes with high performance for variety of energyrelated devices.
文摘On the basis of survey of current land use situation in Changfeng County,this paper analyzed land use structure,trend and environment of structural adjustment. Besides,it explored county-wide land use structure mode,namely, " division + indicator + policy". Through reasonable distribution,it is expected to build proper land use structure framework,avoid passive situation of relying on policies simply,and bring into play stability keeping function of land use structure,so as to promote county-wide economic development,and bring into play countywide lever function of rural transition areas.
文摘In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.
基金This project was sponsored by the State Science and Technology Commission of China (No. 85907020301)the United Earthquake Science Foundation of China (No. 196122). Contribution No.RCEG98003Research Center of Exploration Geophysics, China Seismologica
文摘The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.
文摘In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are discussed. The results show that different tectonic units have different features of crustal velocity structures. In general, there are low velocity distributions in the crust in regions with strong tectonic activities, and the scales of low velocity distributions are related to the tectonic activities. The average velocities are relatively low in such regions. This reflects strong crustal deformation and the variations of states of matter in the crust resulting from strong tectonic movements. These regions are also seismically active zones frequented by strong earthquakes. Therefore, studying crustal velocity structures of these regions is of great importance to understanding crustal geodynamic process and seismogenic tectonic background.
文摘This paper presents a method for structured scene modeling using micro stereo vision system with large field of view. The proposed algorithm includes edge detection with Canny detector, line fitting with principle axis based approach, finding corresponding lines using feature based matching method, and 3D line depth computation.
基金This project sponsored by the National Natural Science Foudation of China(NSFC)(41574084 and 41774071)
文摘We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC)along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data.This profile extends from southwest Yan’an of central Shaanxi Province of China(109.47°E),across the southern Trans-North China Orogen(TNCO),the southwestern part of the North China Plain(NCP),the Luxi Uplift(LU)and the Sulu Orogen(SLO),ending at Qingdao City of Shandong Province,the eastern margin of China(120.12°E)along 36°N.We utilized reflectivity synthetic seismogram modeling of the active source data to develop 1-D velocity structures of the sub-blocks of the NCC.Our final model shows that the NCC crust varies remarkably among the tectonic units with different velocity structure features.Higher lower crustal velocity and Moho depth^42 km is a major feature of the crust beneath southern Ordos Blockt.The TNCO which is composed of Lyuliangshan Mountains(LM),Shanxi Graben(SXG)and Taihangshan Mountains(TM)shows dominant trans-orogenic features.The NCP shows a dominant thickening of sediments,sharp crust thinning with Moho depth^32 km and significant lower average velocity.The SLO and the LU shows a stratified crust,higher average velocity and crust thinning with Moho depth of^35 km.Our model shows the coincidence between the deep structure and the surface geology among all the tectonic sub-blocks of the NCC.
文摘The Pearl River Mouth Basin (PRMB) covers an area of approximately 20× 104 km2.However,oil-gas fields detected in this area thus far are highly concentrated and controlled predominantly by second-order structural belts,the seven largest of which aggregate proved oil reserves of 7.7× 108 m3,accounting for 86% of the total discovered reserve in the basin.These second-order structures have one common phenomenon:oil is contained in all traps present in them.In other words,they are all belt-wide petroliferous reservoirs.Research has identified eight types of second-order structural belts under two categories in the eastern PRMB.Their petroliferous properties are subject to three typical constraints:petroliferous properties of subsags hosting these structural belts,locations of these belts in the petroleum system,and availability of traps prior to the hydrocarbon expulsion and migration.The formation and distribution of oil reservoirs in these belts are characterized by subsag-belt integration and "three-in-one".The former indicates that sags and the second-order structural belts within the supply range of the sags constitute the basic units of hydrocarbon accumulations and are therefore inseparable.The latter indicates that a belt-wide petroliferous second-order structural belt always contains three important elements:hydrocarbon richness,effective pathway and pre-existing traps.
基金financial support of the Austrian Ministry for Transport,Innovation and Technology(BMVIT)and the Austrian Science Fund(FWF)via the project TRP46-B19Part of the study was conducted using a travel grant provided by the European Science Foundation(ESF).
文摘Longevity is regarded as the most important functional trait in cattle breeding with high economic value yet low heritability. In order to identify genomic regions associated with longevity, a genome wise association study was performed using data from 4887 Fleckvieh bulls and 33,556 SNPs after quality control. Single SNP regression was used for identification of important SNPs including eigenvectors as a means of correction for population structure. SNPs selected with a false discovery rate threshold of 0.05 and with local false discovery rate identified genomic regions associated with longevity which were subsequently cross checked with the National Center for Biotechnology Information (NCBI) database. This, to identify interesting genes in cattle and their homologue forms in other species. The most notable genes were SYT10 located on chromosome 5, ADAMTS3 on chromosome 6, NTRK2 on chromosome 8 and SNTG1 on chromosome 14 of the cattle genome. Several of the genes found have previously been associated with cattle fertility. Poor fertility is an important culling reason and thereby affects longevity in cattle. Several signals were located in regions sparse with described genes, which suggest that there might be several other non-identified genetic pathways for this important trait.
基金funded by USDA-ARS CRIS Project 5438-21000026-00DNIFA multistate research project W006
文摘Genetic diversity, population structure, and genome-wide marker-trait association analyses were conducted on a special collection of 298 homozygous lettuce(Lactuca sativa L.) lines. Each of these lines was derived from a single plant that had been genotyped with 384 SNP markers using LSGermOPA. They included 122 butterhead, 53 romaine, 63 crisphead, 53 leaf and 7 stem types. Genetic diversity among these plants was assessed by pairwise comparison based on 322 high-quality SNP markers selected from 384 SNPs. Only 258 unique genotypes were identified among the 298 lines because 26 pairs or small groups(a total of 66 lines) shared identical genotypes. The average genetic similarity coefficient(GS) among these unique genotypes was 63.9% with a range of 40.6% to 99.8%. A phylogenetic tree was constructed based on the genotypic data. The most likely number of populations was estimated to be two or six. Association analysis between the 322 SNP markers and 10 phenotypic traits using the 258 homozygous lines was performed by three different methods: single factor analysis, general linear model analysis, and mixed linear model analysis. Nine significant marker-trait associations(SMTAs) were detected at P < 0.0001 with all three methods and also when considering kinship and/or population structure for this collection, with five SMTAs for seed coat color, one for leaf undulation, two for leaf anthocyanin, and one for stem anthocyanin. These markers will be useful in marker-assisted selection after further validation with segregating populations.
文摘High resolution traffic measurements from modern communications networks provide unique opportunities for developing and validating mathematical models for aggregate traffic, or WAN (wide area network) traffic. To exploit these opportunities, this paper emphasized the need for structural model that takes into account specific physical feature of the underlying communication network structure. This approach is in sharp contrast to the traditional black box modeling methodology from this time series analysis that ignores, in general, specific physical structure. The paper demonstrated, in particular, how the proposed structural modeling approach provides a direct link between the observed self similarity characteristic of measured aggregate network traffic and the strong empirical evidence in favor of heavy tailed, infinite variance phenomena at the level of individual network connections.
基金Deanship of ScientificResearch,King Abdulaziz University for providing financial vide grant number (KEP-MSc-41-135-1443).
文摘Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multiple-Input-Multiple-Output(MIMO)antenna for ultra-wideband(UWB)applications is presented.The design consists of four radiators that are orthogonally positioned and confined to a compact 40×40×0.8 mm3 space.The final antenna design uses an inverted L shape partial ground to produce an acceptable reflection coefficient(S11<−10 dB)in an entire UWB band(3.1–10.6)giga hertz(GHz).Moreover,the inter-element isolation has also been enhanced to>20 db for majority of the UWB band.The antenna was fabricated and tested with the vector network analyzer(VNA)and in an anechoic chamber for scattering parameters and radiation patterns.Furthermore,different MIMO diversity performance metrics are also measured to validate the proposed model.The simulation results and the experimental results from the constructed model agree quite well.The proposed antenna is compared with similar designs in recently published literature for various performance metrics.Because of its low envelope correlation coefficient(ECC<0.1),high diversity gain(DG>9.99 dB),peak gain of 4.6 dB,reduced channel capacity loss(CCL<0.4 b/s/Hz),and average radiation efficiency of over 85%,the proposed MIMO antenna is ideally suited for practical UWB applications.
基金supported by National Natural Science Foundation of China(No.81072389,81373102,81473070 and 81402765)Research Found for the Doctoral Program of Higher Education of China(No.20113234110002)+4 种基金Key Grant of Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.10KJA330034)College Philosophy and Social Science Foundation from Education Department of Jiangsu Province of China(No.2013SJB790059,2013SJD790032)Research Foundation from Xuzhou Medical College(No.2012KJ02)Research and Innovation Project for College Graduates of Jiangsu Province of China(No.CXLX13_574)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In the past few years, genome-wide association study (GWAS) has made great successes in identifying genetic susceptibility loci underlying many complex diseases and traits. The findings provide important genetic insights into understanding pathogenesis of diseases. In this paper, we present an overview of widely used approaches and strategies for analysis of GWAS, offered a general consideration to deal with GWAS data. The issues regarding data quality control, population structure, association analysis, multiple comparison and visual presentation of GWAS results are discussed; other advanced topics including the issue of missing heritability, meta-analysis, setbased association analysis, copy number variation analysis and GWAS cohort analysis are also briefly introduced.