Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency unde...Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency under actual flight operations, there is a need to consider multiple flight conditions (multipoint) in aircraft conceptual design and optimization. A new strategy for multipoint optimizations in aircraft conceptual design is proposed in this paper. A wide-body aircraft is taken as an example for both single-point and multipoint optimizations with the objective of maximizing the specific hourly productivity. Boeing 787-8 flight data was used in the multipoint opti- mization to reflect the true objective function. The results show that the optimal design from the multipoint optimization has a 7.72% total specific hourly productivity increase of entire flight missions compared with that of the baseline aircraft, while the increase in the total specific hourly productivity from the single-point optimal design is only 5.73%. The differences between the results of single-point and multipoint optimizations indicate that there is a good option to further improve aircraft efficiency by considering actual flight conditions in aircraft conceptual design and optimization.展开更多
Analysis of the Direct Operating Cost(DOC) of aircraft is an important step towards achieving financially sustainable aviation operations. However, the value of the DOC for different aircraft types and flight scenario...Analysis of the Direct Operating Cost(DOC) of aircraft is an important step towards achieving financially sustainable aviation operations. However, the value of the DOC for different aircraft types and flight scenarios is not widely available. In this study, we perform a systematic analysis of the DOC of every wide-body passenger aircraft currently in production, using the method of the Association of European Airlines(AEA). The elements of the DOC, e.g. financial costs, maintenance costs, and flight costs, are evaluated individually. Several realistic flight scenarios are considered, each with differences in route distance, fuel price, passenger number, and seating arrangement. For each flight scenario, the most cost-efficient aircraft type is identified and evaluated in the context of operations from Hong Kong International Airport. The information provided in this study could be useful to airline operators and policy makers.展开更多
基金supported by the Fundamental Research Funds for Central Universities(NUAA NS2016010)
文摘Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency under actual flight operations, there is a need to consider multiple flight conditions (multipoint) in aircraft conceptual design and optimization. A new strategy for multipoint optimizations in aircraft conceptual design is proposed in this paper. A wide-body aircraft is taken as an example for both single-point and multipoint optimizations with the objective of maximizing the specific hourly productivity. Boeing 787-8 flight data was used in the multipoint opti- mization to reflect the true objective function. The results show that the optimal design from the multipoint optimization has a 7.72% total specific hourly productivity increase of entire flight missions compared with that of the baseline aircraft, while the increase in the total specific hourly productivity from the single-point optimal design is only 5.73%. The differences between the results of single-point and multipoint optimizations indicate that there is a good option to further improve aircraft efficiency by considering actual flight conditions in aircraft conceptual design and optimization.
文摘Analysis of the Direct Operating Cost(DOC) of aircraft is an important step towards achieving financially sustainable aviation operations. However, the value of the DOC for different aircraft types and flight scenarios is not widely available. In this study, we perform a systematic analysis of the DOC of every wide-body passenger aircraft currently in production, using the method of the Association of European Airlines(AEA). The elements of the DOC, e.g. financial costs, maintenance costs, and flight costs, are evaluated individually. Several realistic flight scenarios are considered, each with differences in route distance, fuel price, passenger number, and seating arrangement. For each flight scenario, the most cost-efficient aircraft type is identified and evaluated in the context of operations from Hong Kong International Airport. The information provided in this study could be useful to airline operators and policy makers.