Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in...Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in two-dimensional space. This metalens achieves focus shift in the x-direction by changing the oblique incidence angle of the incident wave,and focus control in the y-direction by combining with the convolution principle of the digitally coded metasurface to achieve flexible control of light focusing in the two-dimensional plane. The metasurface unit is mainly composed of threelayer of metal structure and two layers of medium, and the transmission phase is obtained by changing the middle layer of metal structure, which in turn obtains the required phase distribution of the metalens. The design of the metalens realizes the function of the lens with a large viewing angle at the x-polarized incidence, and realizes two-dimensional focus control. Experimentally, we prepared the designed coding metalens and tested the focus control function of the wide-angle coding metalens. The experimental results are in good agreement with the design results.展开更多
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b...The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.展开更多
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo...The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.展开更多
In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with...In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.展开更多
AIM:To compare the effects of scleral buckling using wide-angle viewing systems(WAVS) with that using indirect ophthalmoscope for the treatment of rhegmatogenous retinal detachment.METHODS:The study was a retrospe...AIM:To compare the effects of scleral buckling using wide-angle viewing systems(WAVS) with that using indirect ophthalmoscope for the treatment of rhegmatogenous retinal detachment.METHODS:The study was a retrospective analyses of the medical records of 94 eyes(94 patients) with rhegmatogenous retinal detachment.Among them,47 eyes underwent scleral buckling using WAVS with endoiiluminator(Group W),and 47 eyes underwent scleral buckling using indirect ophthalmoscope(Group I).Surgical durations,primary success rate,best-corrected visual acuities(BCVA),delayed subretinal fluid absorptions and surgical complications were compared between the two groups.RESULTS:At baseline,there were no statistical differences between the two groups in patient's age(P=0.997),gender(P=0.853),symptom duration(P=0.216),BCVA(P=0.389),refractive error(P=0.167),intraocular pressure(P=0.595),the number of retinal breaks(P=0.832),the extent of retinal detachment(P =0.246),subretinal demarcation line(P=0.801),and macular detachment(P=0.811).The follow-up period was 12 mo.The surgical durations in Group W(with or without encircling buckling) were significant shorter than those in Group I(P〈0.001 respectively).The primary success rate was94.27%in Group W,which was similar to that in Group I(92.38%,P=0.931).The BCVA in Group W was better than that in Group I(P〈0.001) at 1-month follow-up visit.However,there were no significant differences between the two groups at 3-month(P=0.221),6-month(P =0.674),and 12-month(P=0.363) follow-up visits respectively.Delayed subretinal fluid absorptions were more common in Group I than in Group W at 1-month(P=0.045) follow-up visit,but there were no significant differences between the two groups at 3-month(P=0.111),6-month(P =1.000) and 12-month follow-up visits respectively.CONCLUSION:Scleral buckling using WAVS can be an alternative choose for rhegmatogenous retinal detachment展开更多
The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity...The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.展开更多
Polarity reversals may occur to transmitted P waves if the incidence angle is greater than the critical incidence angle. We analyze the characteristics of reflection and transmission coefficients under the condition o...Polarity reversals may occur to transmitted P waves if the incidence angle is greater than the critical incidence angle. We analyze the characteristics of reflection and transmission coefficients under the condition of wide incidence angle based on Zoeppritz equations. We find that for specific conditions, as the incidence angle increases, the characteristic curve of the transmitted P-wave coefficient enters the third quadrant from the first quadrant through the origin, which produces a transition in the transmitted P wave and the corresponding coefficient experiences polarity reversal. We derive the incidence angle when the transmitted P-wave coefficient is zero and verify that it equals zero by using finite-difference forward modeling for a single-interface model. We replace the water in the model reservoir by gas and see that the reservoir P-wave velocity and density decrease dramatically. By analyzing the synthetic seismogram of the transmitted P wave in the single-interface model, we show that the gas-saturated reservoir is responsible for polarity reversal.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
A 400 km-long wide-angle seismic experiment along Lianxian-Gangkou profile in South China was carried out to study contact relationship between southeast continental margin of Yangtze block and northwest continental m...A 400 km-long wide-angle seismic experiment along Lianxian-Gangkou profile in South China was carried out to study contact relationship between southeast continental margin of Yangtze block and northwest continental margin of Cathaysia block. We reconstructed crustal wide-angle reflection structure by the depth-domain pre-stack migration and the crustal velocity model constructed from the traveltime fitting. The wide-angle reflection section shows different reflection (from crystalline basement and Moho) pattern beneath the Yangtze and Cathaysia blocks, and suggests the Wuchuan-Sihui fault is the boundary between them. A cluster of well-developed reflections on Moho and in its underlying topmost mantle probably comes from alternative thin layers, which may be seismic signature of strong interaction between crust and mantle in the tectonic environment of lithosphere extension.展开更多
The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 5...The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.展开更多
Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry ...Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.展开更多
The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a geneti...The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a genetic algorithm is used in the design of the GRIN AR coatings. The average reflectance over a wavelength range from 400 nm to 800 nm and angles of incidence from 0° to 80° could be reduced to only 0.1% by applying an optimized AR coating onto BK7 glass. The optimization of step-graded GRIN AR coating is then further investigated in detail. A two-layer AR coating was deposited by electron beam evaporation with glancing angle deposition technology, and the positional homogeneity was improved by depositing the film from two opposite directions. The microstructure of the AR coating was investigated by scanning electron microscopy, and the residual reflectances of the coating sample are in agreement with theoretical calculations. The optimized GRIN AR coatings are beneficial to increasing the efficiency of light utilization.展开更多
For potential military applications, a flexible metamaterial absorber(MMA) working on whole K-bands with totalthickness of 3.367 mm, ultra-broadband, polarization-insensitive, and wide-angle stability is presented bas...For potential military applications, a flexible metamaterial absorber(MMA) working on whole K-bands with totalthickness of 3.367 mm, ultra-broadband, polarization-insensitive, and wide-angle stability is presented based on frequencyselective surface(FSS). The absorber is composed of polyvinyl chloride(PVC) layer, polyimide(PI) layer, and poly tetra fluoro ethylene(PTFE) layer, with a sandwich structure of PVC–PI–PTFE–metal plate. Periodic conductive patterns play a crucial role in the absorber, and in traditional, it is designed on the upper surface of PI layer to form LC resonance. Different from commonly absorber, all the patterns are located on the lower surface of the PI layer in this work, and hence the impedance matching and absorptivity are improved in this purposed absorber. The flexible absorber with patterns on lower surface of the PI layer is compared with that on upper surface of the PI layer, the difference and the reasons are explained by absorption mechanism based on equivalent circuit model, and surface current density and electric field distribution are used to analyze resonance peaks. Absorptivity is greater than 90% in a frequency range of 10.47 GHz–45.44 GHz with relative bandwidth of 125.1%, covering the whole Ku, K, Ka, and some of X, U bands, especially containing the whole K bands from 12 GHz to 40 GHz. Radar cross section(RCS) is reduced at least 10 dB in 11.48 GHz–43.87 GHz frequency ranges,and absorption remained about 90% when the incident angle changed from 0°to 55°. The purposed absorber is fabricated,measured, and experiment results show good agreement with theoretical analysis and numerical simulation. After bonded on outer surface of different cylinders with diameters of 200 mm and 100 mm, the absorption of MMA is approximately reduced 10% and 20% respectively, which shows good conformal character with surface of various curvatures. Due to the attractive performance on strong absorption in the whole K-bands, flexible and easy conformal, our design exhibits broad potential application in radar stealth and sensors.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa...Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.展开更多
Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the freq...Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada...When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.展开更多
The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet doma...The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet domain.Firstly,the method uses the predicted multiple data to generate the Hilbert transform records,time derivative records and time derivative records of Hilbert transform.Then,the above records are transformed into the curvelet domain and multiple matching attenuation based on least squares extended filtering is performed.Finally,the attenuation results are transformed back into the time-space domain.Tests on the model data and field data show that the method proposed in the paper effectively suppress the multiples while preserving the primaries well.Furthermore,it has higher accuracy in eliminating multiple reflections,which is more suitable for the multiple attenuation tasks in the areas with complex structures compared to the time-space domain extended filtering method and the conventional curvelet transform method.展开更多
基金supported in part by the Science and technology innovation leading talent project of special support plan for high-level talents in Zhejiang Province(2021R52032)Natural Science Foundation of Zhejiang Province under grant No.LY22F050001+1 种基金Special project for professional degree postgraduates of Zhejiang Provincial Education Department(No.Y202353663,Y202353686)in part by the National Natural Science Foundation of China under grant No.62175224.China Jiliang University Basic Research Expenses.
文摘Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in two-dimensional space. This metalens achieves focus shift in the x-direction by changing the oblique incidence angle of the incident wave,and focus control in the y-direction by combining with the convolution principle of the digitally coded metasurface to achieve flexible control of light focusing in the two-dimensional plane. The metasurface unit is mainly composed of threelayer of metal structure and two layers of medium, and the transmission phase is obtained by changing the middle layer of metal structure, which in turn obtains the required phase distribution of the metalens. The design of the metalens realizes the function of the lens with a large viewing angle at the x-polarized incidence, and realizes two-dimensional focus control. Experimentally, we prepared the designed coding metalens and tested the focus control function of the wide-angle coding metalens. The experimental results are in good agreement with the design results.
基金supported by the TARCC,Welch Foundation Award(I-1724)the Decherd Foundationthe Pape Adams Foundation,NIH grants NS092616,NS127375,NS117065,NS111776。
文摘The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.82104412(to TD)Shaanxi Provincial Key R&D Program,No.2023-YBSF-165(to TD)+1 种基金the Natural Science Foundation of Shaanxi Department of Science and Technology,No.2018JM7022(to FM)Shaanxi Provincial Key Industry Chain Project,No.2021ZDLSF04-11(to PW)。
文摘The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘In order to deal with torque pulsation problem caused by traditional control method for brushless DC (BLDC) motor and to achieve high precision and good stability, a novel control strategy is proposed. Compared with the traditional control scheme, by using phase voltage as a control objective and making waveform of phase current approximately quasi-sinusoidal, torque ripple of BLDC motor is reduced from the original 14% to 3.4%, while toque is increased by 3.8%. Furthermore, by detecting zero-crossings of back electromotive force (BEMF) with non-conducting phases, sensorless control is realized. The new control strategy is simple. It can minimize torque ripple, increase torque, and realize sensorless control for BLDC motor. Simulation and experiments show good performance of BLDC motor by using the new control method.
基金Supported by the Projects of Henan Health and Family Planning Commission(No.2014005)Henan Health Department(No.201304007)Henan Science and Technology Department(No.142102310110)
文摘AIM:To compare the effects of scleral buckling using wide-angle viewing systems(WAVS) with that using indirect ophthalmoscope for the treatment of rhegmatogenous retinal detachment.METHODS:The study was a retrospective analyses of the medical records of 94 eyes(94 patients) with rhegmatogenous retinal detachment.Among them,47 eyes underwent scleral buckling using WAVS with endoiiluminator(Group W),and 47 eyes underwent scleral buckling using indirect ophthalmoscope(Group I).Surgical durations,primary success rate,best-corrected visual acuities(BCVA),delayed subretinal fluid absorptions and surgical complications were compared between the two groups.RESULTS:At baseline,there were no statistical differences between the two groups in patient's age(P=0.997),gender(P=0.853),symptom duration(P=0.216),BCVA(P=0.389),refractive error(P=0.167),intraocular pressure(P=0.595),the number of retinal breaks(P=0.832),the extent of retinal detachment(P =0.246),subretinal demarcation line(P=0.801),and macular detachment(P=0.811).The follow-up period was 12 mo.The surgical durations in Group W(with or without encircling buckling) were significant shorter than those in Group I(P〈0.001 respectively).The primary success rate was94.27%in Group W,which was similar to that in Group I(92.38%,P=0.931).The BCVA in Group W was better than that in Group I(P〈0.001) at 1-month follow-up visit.However,there were no significant differences between the two groups at 3-month(P=0.221),6-month(P =0.674),and 12-month(P=0.363) follow-up visits respectively.Delayed subretinal fluid absorptions were more common in Group I than in Group W at 1-month(P=0.045) follow-up visit,but there were no significant differences between the two groups at 3-month(P=0.111),6-month(P =1.000) and 12-month follow-up visits respectively.CONCLUSION:Scleral buckling using WAVS can be an alternative choose for rhegmatogenous retinal detachment
文摘The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.
基金the National Natural Science Foundation of China(No.41374123)
文摘Polarity reversals may occur to transmitted P waves if the incidence angle is greater than the critical incidence angle. We analyze the characteristics of reflection and transmission coefficients under the condition of wide incidence angle based on Zoeppritz equations. We find that for specific conditions, as the incidence angle increases, the characteristic curve of the transmitted P-wave coefficient enters the third quadrant from the first quadrant through the origin, which produces a transition in the transmitted P wave and the corresponding coefficient experiences polarity reversal. We derive the incidence angle when the transmitted P-wave coefficient is zero and verify that it equals zero by using finite-difference forward modeling for a single-interface model. We replace the water in the model reservoir by gas and see that the reservoir P-wave velocity and density decrease dramatically. By analyzing the synthetic seismogram of the transmitted P wave in the single-interface model, we show that the gas-saturated reservoir is responsible for polarity reversal.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金supported by the Chinese Academy of Sciences (KZCX2-YW-132)the National Natural Sciences Foundation of China(40721003, 40830315)
文摘A 400 km-long wide-angle seismic experiment along Lianxian-Gangkou profile in South China was carried out to study contact relationship between southeast continental margin of Yangtze block and northwest continental margin of Cathaysia block. We reconstructed crustal wide-angle reflection structure by the depth-domain pre-stack migration and the crustal velocity model constructed from the traveltime fitting. The wide-angle reflection section shows different reflection (from crystalline basement and Moho) pattern beneath the Yangtze and Cathaysia blocks, and suggests the Wuchuan-Sihui fault is the boundary between them. A cluster of well-developed reflections on Moho and in its underlying topmost mantle probably comes from alternative thin layers, which may be seismic signature of strong interaction between crust and mantle in the tectonic environment of lithosphere extension.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB429701)the National Natural Science Foundation of China(Grant Nos.41606083,91958210,41606050 and 41210005)+1 种基金AoShan Technological Innovation Projects of National Laboratory for Marine Science and Technology(Qingdao)(2015ASKJ03)National Marine Geological Special Project(DD20190236,DD20190365,DD20190377)。
文摘The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.
文摘Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.
文摘The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a genetic algorithm is used in the design of the GRIN AR coatings. The average reflectance over a wavelength range from 400 nm to 800 nm and angles of incidence from 0° to 80° could be reduced to only 0.1% by applying an optimized AR coating onto BK7 glass. The optimization of step-graded GRIN AR coating is then further investigated in detail. A two-layer AR coating was deposited by electron beam evaporation with glancing angle deposition technology, and the positional homogeneity was improved by depositing the film from two opposite directions. The microstructure of the AR coating was investigated by scanning electron microscopy, and the residual reflectances of the coating sample are in agreement with theoretical calculations. The optimized GRIN AR coatings are beneficial to increasing the efficiency of light utilization.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. JD2020JGPY0010)the China Post-doctoral Science Foundation (Grant No. 2020M671834)the Anhui Province Post-doctoral Science Foundation, China (Grant No. 2020A397)。
文摘For potential military applications, a flexible metamaterial absorber(MMA) working on whole K-bands with totalthickness of 3.367 mm, ultra-broadband, polarization-insensitive, and wide-angle stability is presented based on frequencyselective surface(FSS). The absorber is composed of polyvinyl chloride(PVC) layer, polyimide(PI) layer, and poly tetra fluoro ethylene(PTFE) layer, with a sandwich structure of PVC–PI–PTFE–metal plate. Periodic conductive patterns play a crucial role in the absorber, and in traditional, it is designed on the upper surface of PI layer to form LC resonance. Different from commonly absorber, all the patterns are located on the lower surface of the PI layer in this work, and hence the impedance matching and absorptivity are improved in this purposed absorber. The flexible absorber with patterns on lower surface of the PI layer is compared with that on upper surface of the PI layer, the difference and the reasons are explained by absorption mechanism based on equivalent circuit model, and surface current density and electric field distribution are used to analyze resonance peaks. Absorptivity is greater than 90% in a frequency range of 10.47 GHz–45.44 GHz with relative bandwidth of 125.1%, covering the whole Ku, K, Ka, and some of X, U bands, especially containing the whole K bands from 12 GHz to 40 GHz. Radar cross section(RCS) is reduced at least 10 dB in 11.48 GHz–43.87 GHz frequency ranges,and absorption remained about 90% when the incident angle changed from 0°to 55°. The purposed absorber is fabricated,measured, and experiment results show good agreement with theoretical analysis and numerical simulation. After bonded on outer surface of different cylinders with diameters of 200 mm and 100 mm, the absorption of MMA is approximately reduced 10% and 20% respectively, which shows good conformal character with surface of various curvatures. Due to the attractive performance on strong absorption in the whole K-bands, flexible and easy conformal, our design exhibits broad potential application in radar stealth and sensors.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
基金the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720210030)the National Natural Science Foundation of China (Grant No. 11204255)。
文摘Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金supported by the National Natural Science Foundation of China (62206204,62176193)the Natural Science Foundation of Hubei Province,China (2023AFB705)the Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0932)。
文摘When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
基金funded by the Wenhai Program of the ST Fund of Laoshan Laboratory (No.202204803)the National Natural Science Foundation of China (Nos.42074138,42206195)+1 种基金the National Key R&D Program of China (No.2022YFC2803501)the Research Project of the China National Petroleum Corporation (No.2021ZG02)。
文摘The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet domain.Firstly,the method uses the predicted multiple data to generate the Hilbert transform records,time derivative records and time derivative records of Hilbert transform.Then,the above records are transformed into the curvelet domain and multiple matching attenuation based on least squares extended filtering is performed.Finally,the attenuation results are transformed back into the time-space domain.Tests on the model data and field data show that the method proposed in the paper effectively suppress the multiples while preserving the primaries well.Furthermore,it has higher accuracy in eliminating multiple reflections,which is more suitable for the multiple attenuation tasks in the areas with complex structures compared to the time-space domain extended filtering method and the conventional curvelet transform method.