In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of...In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.展开更多
A wide-area damping controller(WADC)is effective in damping inter-area low-frequency oscillation(LFO),if the time delay in a wide-area control loop can be properly handled.In order to simplify the WADC design and enla...A wide-area damping controller(WADC)is effective in damping inter-area low-frequency oscillation(LFO),if the time delay in a wide-area control loop can be properly handled.In order to simplify the WADC design and enlarge the delay adaptation range,the classic power system stabilizer(PSS)is adopted,and a new unified residue(UR)method is proposed for compact WADC design.The strategy of control loop selection is also improved by modifying the relative residue index based on a few dominant oscillation modes.The designed PSSbased compact WADC is as simple as classic PSS with no more than two lead-lag phase compensation units.Case studies are carried out on an IEEE 16-machine 68-bus power system.Simulation results demonstrate that the control loop selection before the WADC design is necessary and that the proposed selection strategy can easily pick out the suitable candidate control loops.In addition,it is feasible for the UR method to design WADCs with different time delays in the selected control loops.All the designed WADCs are effective in damping inter-area LFO and robust to time delay variations under operation conditions.Comparisons among five design methods for PSS-based WADC show that the proposed UR method is superior in delay adaptation,the conciseness of WADC structure and computation speed of parameters.展开更多
A time-delay-dependent wide-area damping controller synthesis approach,based on Jensen’s integral inequality and evolution algorithm,is developed to suppress the adverse effect of time delay on the supplemental contr...A time-delay-dependent wide-area damping controller synthesis approach,based on Jensen’s integral inequality and evolution algorithm,is developed to suppress the adverse effect of time delay on the supplemental control of high-voltage direct current(DC)transmission systems.Initially,the state-space model of hybrid AC/DC systems with time delay is derived and the delay-dependent criteria for the stability of the closed-loop system are provided based on Jensen’s integral inequality.Subsequently,initial solutions are randomly generated to overcome the difficulty of solving the nonlinear matrix inequality.Finally,the time-delay stability upper bound of the controller is optimized using the differential evolution algorithm.In comparison to popular time-delay stable controller design methods,such as the free-weighting-matrix approach,the proposed method based on output feedback realization requires fewer decision variables and is more suitable for large-scale hybrid AC/DC systems.Three examples are introduced to verify the effectiveness of the proposed method.展开更多
文摘In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.
基金supported by the National Natural Science Foundation of China(No.51407160,No.51777193)the Key Research and Development Program of Zhejiang Province(No.2019C01149)。
文摘A wide-area damping controller(WADC)is effective in damping inter-area low-frequency oscillation(LFO),if the time delay in a wide-area control loop can be properly handled.In order to simplify the WADC design and enlarge the delay adaptation range,the classic power system stabilizer(PSS)is adopted,and a new unified residue(UR)method is proposed for compact WADC design.The strategy of control loop selection is also improved by modifying the relative residue index based on a few dominant oscillation modes.The designed PSSbased compact WADC is as simple as classic PSS with no more than two lead-lag phase compensation units.Case studies are carried out on an IEEE 16-machine 68-bus power system.Simulation results demonstrate that the control loop selection before the WADC design is necessary and that the proposed selection strategy can easily pick out the suitable candidate control loops.In addition,it is feasible for the UR method to design WADCs with different time delays in the selected control loops.All the designed WADCs are effective in damping inter-area LFO and robust to time delay variations under operation conditions.Comparisons among five design methods for PSS-based WADC show that the proposed UR method is superior in delay adaptation,the conciseness of WADC structure and computation speed of parameters.
基金supported by the National Key Research and Development Program of China(2016YFB0901001).
文摘A time-delay-dependent wide-area damping controller synthesis approach,based on Jensen’s integral inequality and evolution algorithm,is developed to suppress the adverse effect of time delay on the supplemental control of high-voltage direct current(DC)transmission systems.Initially,the state-space model of hybrid AC/DC systems with time delay is derived and the delay-dependent criteria for the stability of the closed-loop system are provided based on Jensen’s integral inequality.Subsequently,initial solutions are randomly generated to overcome the difficulty of solving the nonlinear matrix inequality.Finally,the time-delay stability upper bound of the controller is optimized using the differential evolution algorithm.In comparison to popular time-delay stable controller design methods,such as the free-weighting-matrix approach,the proposed method based on output feedback realization requires fewer decision variables and is more suitable for large-scale hybrid AC/DC systems.Three examples are introduced to verify the effectiveness of the proposed method.