期刊文献+
共找到15,032篇文章
< 1 2 250 >
每页显示 20 50 100
Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
1
作者 Xiaojing Lv Weisheng Li +11 位作者 Jin Zhang Yujie Yang Xuefei Jia Yitong Ji Qianqian Lin Wenchao Huang Tongle Bu Zhiwei Ren Canglang Yao Fuzhi Huang Yi-Bing Cheng Jinhui Tong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期64-70,I0003,共8页
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ... Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering. 展开更多
关键词 wide-bandgap perovskite Surface defect Multifunctional molecule All-perovskite tandem solar cells
下载PDF
Phase-stable wide-bandgap perovskites enabled by suppressed ion migration
2
作者 Zhiyu Gao Yu Zhu +20 位作者 Jingwei Zhu Cong Chen Zongjin Yi Yi Luo Yuliang Xu Kai Wu Tianshu Ma Fangfang Cao Zijun Chen Fang Yao Juncheng Wang Wenwu Wang Chuanxiao Xiao Hao Huang Hongxiang Li Qianqian Lin Pei Cheng Changlei Wang Xia Hao Guanggen Zeng Dewei Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期120-128,共9页
Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced ph... Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced phase segregation and related mechanisms have not been fully disclosed.Here,we report a new passivation agent 4-aminotetrahydrothiopyran hydrochloride(4-ATpHCl)with multifunctional groups for the interface treatment of a 1.77-eV wide-bandgap perovskite film.4-ATpH^(+)impeded halogen ion migration by anchoring on the perovskite surface,leading to the inhibition of phase segregation and thus the passivation of defects,which is ascribed to the interaction of 4-ATpH^(+)with perovskite and the formation of low-dimensional perovskites.Finally,the champion device achieved an efficiency of 19.32%with an open-circuit voltage(V_(OC))of 1.314 V and a fill factor of 83.32%.Moreover,4-ATpHCl modified device exhibited significant improved stability as compared with control one.The target device maintained 80%of its initial efficiency after 519 h of maximum power output(MPP)tracking under 1 sun illumination,however,the control device showed a rapid decrease in efficiency after 267 h.Finally,an efficiency of 27.38%of the champion 4-terminal all-perovskite tandem solar cell was achieved by mechanically stacking this wide-bandgap top subcell with a 1.25-eV low-bandgap perovskite bottom subcell. 展开更多
关键词 wide-bandgap perovskite Phase segregation lon migration Interface post-treatment All-perovskite tandems
下载PDF
Two-dimensional Cr_(2)Cl_(3)S_(3)Janus magnetic semiconductor with large magnetic exchange interaction and high-T_(C)
3
作者 Lei Fu Shasha Li +3 位作者 Xiangyan Bo Sai Ma Feng Li Yong Pu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期481-485,共5页
The two-dimensional(2D)Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures.Van der Waals CrCl_(3) monolayer has been experimentally proved to... The two-dimensional(2D)Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures.Van der Waals CrCl_(3) monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K,which will limit its application in spintronic devices.In this work,we propose a new Janus monolayer Cr_(2)Cl_(3)S_(3) based on the first principles calculations.The phonon dispersion and elastic constants confirm that Janus monolayer Cr_(2)Cl_(3)S_(3) is dynamically and mechanically stable.Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr_(2)Cl_(3)S_(3) is an intrinsic ferromagnetic semiconductor with TC of 180 K,which is much higher than that of CrCl_(3) due to the enhanced ferromagnetic coupling caused by S substitution.Moreover,the magnetic easy axis of Janus Cr_(2)Cl_(3)S_(3) can be tuned to the perpendicular direction with a large magnetic anisotropy energy(MAE)of 142eV/Cr.Furthermore,the effect of biaxial strain on the magnetic property of Janus monolayer Cr_(2)Cl_(3)S_(3) is evaluated.It is found that the Curie temperature is more robust under tensile strain.This work indicates that the Janus monolayer Cr_(2)Cl_(3)S_(3) presents increased Curie temperature and out-of-plane magnetic easy axis,suggesting greater application potential in 2D spintronic devices. 展开更多
关键词 FIRST-PRINCIPLES CALCULATIONS 2D materials magnetic properties ferromagentic semiconductor
下载PDF
Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
4
作者 贾子航 周波 +1 位作者 姜振益 张小东 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期617-623,共7页
Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between... Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between different magnetic mechanisms,no efficient and universal tuning strategy is proposed at present.Here,the magnetic interactions and formation energies of isovalent-doped(Mn) and aliovalent(Cr)-doped LiZnAs are studied based on density functional theory(DFT).It is found that the dopant–dopant distance-dependent magnetic interaction is highly sensitive to the carrier concentration and carrier type and can only be explained by the interplay between two magnetic mechanisms,i.e.,superexchange and Zener’s p–d exchange model.Thus,the magnetic behavior and clustering of magnetic dopant can be tuned by the interplay between two magnetic mechanisms.The insensitivity of the tuning effect to U parameter suggests that our strategy could be universal to other DMS. 展开更多
关键词 diluted magnetic semiconductor dopant distribution first-principles calculations
下载PDF
Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn_(0.95)Mn_(0.05))_(2)As_(2)
5
作者 Fei Sun Yi Peng +3 位作者 Guoqiang Zhao Xiancheng Wang Zheng Deng Changqing Jin 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期36-41,共6页
Applying pressure has been evidenced as an effective method to control the properties of semiconductors,owing to its capability to modify the band configuration around Fermi energy.Correspondingly,structural evolution... Applying pressure has been evidenced as an effective method to control the properties of semiconductors,owing to its capability to modify the band configuration around Fermi energy.Correspondingly,structural evolutions under external pres-sures are required to analyze the mechanisms.Herein high-pressure structure of a magnetic doped semiconductor Ba(Zn_(0.95)Mn_(0.05))_(2)As_(2)is studied with combination of in-situ synchrotron X-ray diffractions and diamond anvil cells.The materials become ferromagnetic with Curie temperature of 105 K after further 20%K doping.The title material undergoes an isostruc-tural phase transition at around 19 GPa.Below the transition pressure,it is remarkable to find lengthening of Zn/Mn-As bond within Zn/MnAs layers,since chemical bonds are generally shortened with applying pressures.Accompanied with the bond stretch,interlayer As-As distances become shorter and the As-As dimers form after the phase transition.With further compres-sion,Zn/Mn-As bond becomes shortened due to the recovery of isotropic compression on the Zn/MnAs layers. 展开更多
关键词 magnetic semiconductor high-pressure in-situ X-ray diffraction phase transition
下载PDF
Magneto-Photo-Thermoelastic Excitation Rotating Semiconductor Medium Based on Moisture Diffusivity
6
作者 Khaled Lotfy A.M.S.Mahdy +1 位作者 Alaa A.El-Bary E.S.Elidy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期107-126,共20页
In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection betw... In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection between plasma and moisture diffusivity processes,as well as thermo-elastic waves.The study examines the photothermoelasticity transport process while considering the impact of moisture diffusivity.By employing Laplace’s transformation technique,we derive the governing equations of the photo-thermo-elastic medium.These equations include the equations for carrier density,elastic waves,moisture transport,heat conduction,and constitutive relationships.Mechanical stresses,thermal conditions,and plasma boundary conditions are used to calculate the fundamental physical parameters in the Laplace domain.By employing numerical techniques,the Laplace transform is inverted to get complete time-domain solutions for the primary physical domains under study.Referencemoisture,thermoelastic,and thermoelectric characteristics are employed in conjunction with a graphical analysis that takes into consideration the effects of applied forces on displacement,moisture concentration,carrier density,stress due to forces,and temperature distribution. 展开更多
关键词 Moisture diffusivity semiconductor photothermoelastic ROTATION thermomechanical waves laplace transform
下载PDF
Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger
7
作者 WANG Hao LIU Xuechao +8 位作者 ZHENG Zhong PAN Xiuhong XU Jintao ZHU Xinfeng CHEN Kun DENG Weijie TANG Meibo GUO Hui GAO Pan 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第9期1070-1076,共7页
Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe... Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect. 展开更多
关键词 silicon carbide photoconductive semiconductor switch on-state resistance failure analysis
下载PDF
Low-Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates
8
作者 Gulsum Ersu Carmen Munuera +12 位作者 Federico J.Mompean Daniel Vaquero Jorge Quereda João Elias F.S.Rodrigues Jose A.Alonso Eduardo Flores Jose R.Ares Isabel J.Ferrer Abdullah M.Al-Enizi Ayman Nafady Sruthi Kuriakose Joshua O.Island Andres Castellanos-Gomez 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期201-206,共6页
We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semic... We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semiconductors),deposited by simply rubbing powder of these materials against paper.The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of(+1.32±0.27)mV K^(-1)and(-0.82±0.15)mV K^(-1)for WS_(2)and TiS_(3),respectively.Additionally,Peltier elements were fabricated by interconnecting the P-and N-type films with graphite electrodes.A thermopower value up to 6.11 mV K^(-1)was obtained when the Peltier element were constructed with three junctions.The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices. 展开更多
关键词 paper-based electronics Seebeck effect semiconductorS THERMOELECTRICS van der Waals materials
下载PDF
Functional Confirmation Using a Medical X-Ray System of a Semiconductor Survey Meter
9
作者 Katsunao Suzuki Toru Negishi +2 位作者 Yoh Kato Yasuhisa Kono Michiharu Sekimoto 《Open Journal of Radiology》 2024年第1期1-13,共13页
In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate ... In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter. 展开更多
关键词 semiconductor Survey Meter Functional Confirmation Medical X-Ray System Calibration Factor Time Constant
下载PDF
Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga_(1-x-y)Fe_(x)Ni_(y)Sb
10
作者 Zhi Deng Hailong Wang +5 位作者 Qiqi Wei Lei Liu Hongli Sun Dong Pan Dahai Wei Jianhua Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期16-21,共6页
(Ga,Fe)Sb is a promising magnetic semiconductor(MS)for spintronic applications because its Curie temperature(T_(C))is above 300 K when the Fe concentration is higher than 20%.However,the anisotropy constant Ku of(Ga,F... (Ga,Fe)Sb is a promising magnetic semiconductor(MS)for spintronic applications because its Curie temperature(T_(C))is above 300 K when the Fe concentration is higher than 20%.However,the anisotropy constant Ku of(Ga,Fe)Sb is below 7.6×10^(3)erg/cm^(3)when Fe concentration is lower than 30%,which is one order of magnitude lower than that of(Ga,Mn)As.To address this issue,we grew Ga_(1-x-y)Fe_(x)Ni_(y)Sb films with almost the same x(≈24%)and different y to characterize their magnetic and electrical transport properties.We found that the magnetic anisotropy of Ga_(0.76-y)Fe_(0.24)Ni_(y)Sb can be enhanced by increasing y,in which Ku is negligible at y=1.7%but increases to 3.8×10^(5)erg/cm^(3)at y=6.1%(T_(C)=354 K).In addition,the hole mobility(μ)of Ga_(1-x-y)Fe_(x)Ni_(y)Sb reaches 31.3 cm^(2)/(V∙s)at x=23.7%,y=1.7%(T_(C)=319 K),which is much higher than the mobility of Ga_(1-x)Fe_(x)Sb at x=25.2%(μ=6.2 cm^(2)/(V∙s)).Our results provide useful information for enhancing the magnetic anisotropy and hole mobility of(Ga,Fe)Sb by using Ni co-doping. 展开更多
关键词 magnetic semiconductor molecular beam epitaxy Fe-Ni co-doping magnetic anisotropy hole mobility
下载PDF
Semitransparent organic photovoltaics enabled by transparent p-type inorganic semiconductor and near-infrared acceptor
11
作者 Xue Yan Jiayu Wang +17 位作者 Wei He Top Archie Dela Peña Can Zhu Hailin Yu Yingyue Hu Cenqi Yan Shengqiang Ren Xingyu Chen Zhe Wang Jiaying Wu Mingjie Li Jianlong Xia Lei Meng Shirong Lu Dewei Zhao Mikhail Artemyev Yongfang Li Pei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期351-358,共8页
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi... Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%. 展开更多
关键词 Copper(I)thiocyanate Inorganic semiconductor SEMITRANSPARENT Organic photovoltaics Charge dissociation
下载PDF
Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo-MXene/Mo-Metal Sulfides for Electromagnetic Response
12
作者 Xiaojun Zeng Xiao Jiang +2 位作者 Ya Ning Yanfeng Gao Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期453-473,共21页
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost... The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. 展开更多
关键词 semiconductor-semiconductor-metal heterostructure semiconductor junctions Mott-Schottky junctions Built-in electric field Electromagnetic wave absorption
下载PDF
Growth process,defects,and dopants of bulkβ-Ga_(2)O_(3)semiconductor single crystals
13
作者 Yan-shen Wang Ming-zhi Zhu Yuan Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期491-506,共16页
β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent toleranc... β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent tolerance to high temperature and radiation.Compared to the single crystals of other semiconductors,high-quality and large-sizeβ-Ga_(2)O_(3)single crystals can be grown with low-cost melting methods,making them highly competitive.In this review,the growth process,defects,and dopants ofβ-Ga_(2)O_(3)are primarily discussed.Firstly,the growth process(e.g.,decomposition,crucible corrosion,spiral growth,and development)ofβ-Ga_(2)O_(3)single crystals are summarized and compared in detail.Then,the defects ofβ-Ga_(2)O_(3)single crystals and the influence of defects on Schottky barrier diode(SBD)devices are emphatically discussed.Besides,the influences of impurities and intrinsic defects on the electronic and optical properties ofβ-Ga_(2)O_(3)are also briefly discussed.Concluding this comprehensive analysis,the article offers a concise summary of the current state,challenges and prospects ofβ-Ga_(2)O_(3)single crystals. 展开更多
关键词 β-Ga_(2)O_(3) single-crystal growth DEFECTS DOPANTS semiconductor
下载PDF
Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter
14
作者 Shijing GAO Lele ZHANG +2 位作者 Jinxi LIU Guoquan NIE Weiqiu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期649-662,共14页
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and ... This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated. 展开更多
关键词 piezoelectric semiconductor(PSC) insulating indenter electromechanical response singular integral equation finite element simulation
下载PDF
Solar‑Driven Sustainability:Ⅲ–ⅤSemiconductor for Green Energy Production Technologies
15
作者 Chandran Bagavath Jeong‑Kyun Oh +7 位作者 Sang‑Wook Lee Dae‑Young Um Sung‑Un Kim Veeramuthu Vignesh Jin‑Seo Park Shuo Han Cheul‑Ro Lee Yong‑Ho Ra 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期445-478,共34页
Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentall... Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges.It has been demonstrated that the fabrication ofⅢ–Ⅴsemiconductor-based photocatalysts is effective in increasing solar light absorption,long-term stability,large-scale production and promoting charge transfer.This focused review explores on the current developments inⅢ–Ⅴsemiconductor materials for solar-powered photocatalytic systems.The review explores on various subjects,including the advancement ofⅢ–Ⅴsemiconductors,photocatalytic mechanisms,and their uses in H2 conversion,CO_(2)reduction,environmental remediation,and photocatalytic oxidation and reduction reactions.In order to design heterostructures,the review delves into basic concepts including solar light absorption and effective charge separation.It also highlights significant advancements in green energy systems for water splitting,emphasizing the significance of establishing eco-friendly systems for CO_(2)reduction and hydrogen production.The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion.The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis. 展开更多
关键词 Green energy system Hydrogen evolution CO_(2)reduction Ⅲ-Ⅴsemiconductors Photo electrochemical water splitting
下载PDF
Analysis of piezoelectric semiconductor fibers under gradient temperature changes
16
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
下载PDF
Features of Recombination Radiation of GaAs Type Semiconductors with the Participation of Fine Acceptor Levels in a Magnetic Field
17
作者 Nosirjon Khaydarovich Yuldashev Iftixorjon Isaqovich Yulchiev +1 位作者 Bozorboy Joboraliyevich Akhmadaliev Khusanboy Manopovich Sulaymonov 《Journal of Applied Mathematics and Physics》 2024年第7期2407-2420,共14页
Using the method of Picus and Beer invariants, general expressions are obtained for the total intensity I and the degree of circular polarization Рcirc.of the luminescence of GaAs-type semiconductors with the partici... Using the method of Picus and Beer invariants, general expressions are obtained for the total intensity I and the degree of circular polarization Рcirc.of the luminescence of GaAs-type semiconductors with the participation of shallow acceptor levels in a longitudinal magnetic field H. Special cases are analyzed depending on the value and direction of the magnetic field strength, as well as on the constants of the g-factor of the acceptor g1,g2and the conduction band electron ge. In the case of a strong magnetic field H// [100], [111], [110], a numerical calculation of the angular dependence of the quantities I and Рcirc.was performed for some critical values of g2/g1, at which Рcirc.exhibits a sharp anisotropy in the range from −100% to +100%, and the intensity of the crystal radiation along the magnetic field tends to a minimum value. 展开更多
关键词 semiconductor Recombination Radiation Shallow Acceptor Center Magnetic Field Zeeman Splitting G-FACTORS Anisotropy Circular Polarization Intensity
下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
18
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films semiconductor bridge Miniaturized ignition device
下载PDF
First-Principle Study on the Electronic Structure and Optical Property of New Diluted Magnetic Semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO
19
作者 Zhou Wenjie 《材料科学与工程(中英文B版)》 2024年第1期14-20,共7页
The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first... The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future. 展开更多
关键词 First-principles calculation electronic structure optical property new diluted magnetic semiconductor
下载PDF
Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction 被引量:4
20
作者 Mosayeb Naseri Shiru Lin +2 位作者 Jaafar Jalilian Jinxing Gu Zhongfang Chen 《Frontiers of physics》 SCIE CSCD 2018年第3期101-109,共9页
By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanolnaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrin... By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanolnaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the elec- tronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and excep- tional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells. 展开更多
关键词 2D materials density functional calculations wide bandgap semiconductors
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部