期刊文献+
共找到9,170篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
1
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration BRAKING impact factor
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
2
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Investigation on the Fire Resistance of Cellular Steel Beam with Sinusoidal Openings
3
作者 Michee Sagali Mutentu Bikoumou Gambat Maximino Horacio Yinghua Yang 《Open Journal of Civil Engineering》 2023年第4期637-663,共27页
This paper investigated the fire resistance of CSBs with various parameters under high temperature rise due to fire using finite element software ABAQUS. The mechanical parameters of CSBs are analyzed, including load-... This paper investigated the fire resistance of CSBs with various parameters under high temperature rise due to fire using finite element software ABAQUS. The mechanical parameters of CSBs are analyzed, including load-bearing capacity and the temperature distribution during the heating process. Through structural analysis simulation of the entire heating process, the structural response of the CSBs is divided into five stages: elastic stage, elastic-plastic stage, self-balancing stage, catenary stage and ultimate destruction stage. The results indicate that the opening diameter-to-height ratio, opening spacing-to-height ratio and load ratio significantly affect the structural responses of CSBs in fire, followed by opening shape as secondary effects. In all the numerical analyzes, CSBs are analyzed with a uniformly distributed load and having simply supported boundary conditions. 展开更多
关键词 Fire Resistance Thermal and Structural Analysis Cellular steel beam Transient Temperature Effect
下载PDF
Failure Analysis of Electron Beam Weld Joints for 18Ni Co-free Maraging Steels
4
作者 莫德锋 《金属热处理》 CAS CSCD 北大核心 2007年第z1期384-389,共6页
Microstructure of two different 18Ni Co-free maraging specimens and their electron beam weld joints were investigated comparatively by optical microscopy and SEM. It is showing that both of the steels are typical lath... Microstructure of two different 18Ni Co-free maraging specimens and their electron beam weld joints were investigated comparatively by optical microscopy and SEM. It is showing that both of the steels are typical lath martensite, however, one grain size is about three times as another one, and XRD reveals that the amount of the retained austenitic phase in the former is less then the latter. The austenite distributes in plate form along granular and lath boundaries while some in fine particle within the matrix. The microstructural difference between two specimens led to diverse behaviors in electron beam welding. The first specimen is weldable well but the second shows obvious welding defects of pits and burn-through holes in weld face. The welding microstructure exhibits a typical dendritic morphology, and the grains in the heat-affected zone recrystallized and grew up obviously for high temperature heated by welding electron beam. The weldablity is relative to the thermal conduction performance of the base materials,which is contributed greatly for grain size and austenite content. 展开更多
关键词 maraging steel ELECTRON beam WELDING FAILURE Analysis microstructure
下载PDF
Experimental Study on Force Behavior of Steel Rein forced Concrete Transfer Beam Structure with Basement of Large Space
5
作者 梁书亭 蒋永生 +1 位作者 马辉 刘美景 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期67-72,共6页
本文通过转换梁及其下部柱中设与不设型钢骨架两种方案托柱式底层大空间转换层结构模型的对比试验,系统研究了其在垂直荷载和水平荷载作用下的受力性能、位移延性和破坏机制等.结果表明:型钢混凝土转换梁结构具有良好的受力及抗震性... 本文通过转换梁及其下部柱中设与不设型钢骨架两种方案托柱式底层大空间转换层结构模型的对比试验,系统研究了其在垂直荷载和水平荷载作用下的受力性能、位移延性和破坏机制等.结果表明:型钢混凝土转换梁结构具有良好的受力及抗震性能,并提出了有关设计建议. 展开更多
关键词 型钢混凝土 转换梁 受力性能 延性 破坏机制
下载PDF
Seismic Behavior of Diaphragm-Through Connections of Concrete-Filled Square Steel Tubular Columns and H-Shaped Steel Beams 被引量:6
6
作者 荣彬 陈志华 +1 位作者 Apostolos Fafitis 苗纪奎 《Transactions of Tianjin University》 EI CAS 2013年第3期195-201,共7页
Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us... Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections. 展开更多
关键词 concrete-filled square steel TUBULAR COLUMN H-shaped steel beam diaphragm-through connection seismic behavior load transfer mechanism
下载PDF
Microstructure and fracture toughness of electron beam welded joints of 30CrMnSiNi2A steel 被引量:3
7
作者 陈芙蓉 霍立兴 +3 位作者 张玉凤 张莉 刘方军 陈刚 《China Welding》 EI CAS 2002年第1期20-24,共5页
Two post weld heat treatments (PWHT), 900 ℃ oil quenched and low temperature tempered (PWHTA) and high temperature tempered and then 900 ℃ oil quenched and low temperature tempered (PWHTB), are employed to t... Two post weld heat treatments (PWHT), 900 ℃ oil quenched and low temperature tempered (PWHTA) and high temperature tempered and then 900 ℃ oil quenched and low temperature tempered (PWHTB), are employed to treat the weldment. Then the effect of two post weld heat treatment processes on the microstructure,mechanical properties and fracture toughness of electron beam welded joints of 30CrMnSiNi2A steel have been discussed. The results show that, after two kinds of PWHT the microstructure and hardness at every zones of EBW joints are nearly same. Although the welds have good mechanical properties, fracture toughness of both weld and heat affected zone (HAZ) is low, the CTOD values of welds are comparatively higher than that of HAZ. Microstructure and fracture toughness of two EBW joints have no evident differences. 展开更多
关键词 electron beam welding 30CrMnSiNi2A steel post weld heat treatment MICROSTRUCTURE fracture toughness
下载PDF
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams 被引量:1
8
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Zhang Jianwei Xu Fangfang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期609-624,共16页
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat... A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures. 展开更多
关键词 concrete filled steel tube (CFST) column steel plate (SP) deep beam composite shear wall seismic test calculation and analysis
下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
9
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete steel fiber reinforced concrete Prestressed concrete Continuous beam
下载PDF
Electron beam braze-welding of vanadium alloy to stainless steel with electroplated Cu/Ag coatings 被引量:1
10
作者 王亚荣 腾文华 余洋 《China Welding》 EI CAS 2016年第3期9-15,共7页
Cracks may easily occur in the fusion weld between vanadium alloys and stainless steel due to the brittle intermetallics and welding stress. The high vacuum electron beam braze-welding has been successfully used to jo... Cracks may easily occur in the fusion weld between vanadium alloys and stainless steel due to the brittle intermetallics and welding stress. The high vacuum electron beam braze-welding has been successfully used to join vanadium alloy(V-5Cr-STi) to stainless steel (HR-2) with electroplated Cu and Ag coating. To investigate the effects of electroplated coating on the weldability, the joint appearaace, the microstrueture and the mechanical properties of the joints have been thoroughly analyzed. The results show that the joint surface configuration was good and root reinforcement was full and smooth. A reaction zone (RZ) was gained on the interface between the V-5 Cr-5 Ti alloy and HR-2 stainless steel base metals. The width of reaction zone at the top of the joint was up to O. 65 mm, wider than that in the bottom of the joint ( 0.46 mm). The reaction zone consisted of considerably smaller dendritic structures with an average grain size of less than 10μm. Element Ag and Cu almost enriched the interface between V-SCr-5Ti alloy substrate and RZ, serving as a physical barrier which decreases or avoids the formation of intermetallics. The maximum tensile strength of vanadium alloy^stainless steel dissimilar alloy joint was more than 300 MPa. The joint was defects free. 展开更多
关键词 electron beam braze-welding vanadium alloy stainless steel electroplate
下载PDF
Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates 被引量:3
11
作者 Chunyang Liu Yangyang Wu +1 位作者 Yingqi Gao Zhenyun Tang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期947-958,共12页
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.... In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation. 展开更多
关键词 High-strength recycled concrete beam steel fiber large-particle recycled aggregates pre-damage reinforcement numerical simulation carrying capacity calculation
下载PDF
Investigation on Electron Beam Welded Copper to AISI 316 Stainless Steel Joints 被引量:2
12
作者 El-Hebeary M R Megahed H Elziady N 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期90-91,共2页
Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a ... Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a nd mechanical properties. Electron Beam Welding (EBW) process has been found to be especially well suited in this area. Selection of the appropriate welding par ameters needs thorough investigations. These parameters include: preheat tempera ture (℃), welding current (I w), focusing current (I F), welding spee d (V), height between the gun and workpiece surface (H), scan width (S w) and shift distance (S). The present work aims firstly, setting the pr oper welding conditions to get sound joint between commercially pure copper (C10 200) and AISI 316 stainless steel plates 8 mm thickness. Secondly, investigate t he effect of Electron Beam (EB) shift, single-sided and double-sided welds on the mechanical, metallurgical and chemical properties of the weld bead. Due to t he high difference in thermal conductivity between copper and stainless steel, E lectron Beam (EB) was shifted towards copper with different values. These values were ranged from 0.3 to 0.9 mm in welding without preheating of copper plate an d from 0.1 to 0.4 mm with preheating. Number of joints were welded using variabl e EBW parameters in view to obtain the sound weld bead. These parameters are as follows: gradual reduction I w=51 to 49 mA, I F=845 mA, V=8 mm/sec , H=130 mm, S w=500 μm and S=0.4 mm. The investigation has shown t hat, the copper (C10200) plate must be preheated to get sound welded joint with AISI 316 stainless steel using the EBW process. The tensile fracture in all wel ded samples occurred in copper plate away from the weld bead. This reflects that the weld bead tensile strength is greater than the copper strength. The EB shif t has slight effect on hardness distribution through weld bead. The hardness val ue (H v) reduces in gradual manner from stainless steel hardness to copper one. The EB shift distance has no significant effect on the impact toughness. 展开更多
关键词 AISI Investigation on Electron beam Welded Copper to AISI 316 Stainless steel JOINTS
下载PDF
Research on Vibration Suppression of the Finite Plate with Square Steel Beams Using Traveling Wave Method 被引量:1
13
作者 焦映厚 侯守武 +2 位作者 刘春川 陈照波 李明章 《Journal of Donghua University(English Edition)》 EI CAS 2012年第4期283-287,共5页
The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and... The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and the flexural and torsional motions for the square beams. The vibration response at any position of the coupling structure can be obtained by wave method. Numerical results show that comparing to finite element method (FEM), not only the low frequency but also the medium-high frequency vibration response of the finite plate with square beam can be effectively calculated by wave method. The suppression effect can be increased as the square beam is located at one-third of the length of plate or increasing the height of the beam. The study provides reference for arranged square beams applying to vibration suppression of ship and train structures. 展开更多
关键词 finite plate traveling wave method square steel beam vibration suppression
下载PDF
Cutting and Welding of High-Strength Steels Using Non-Vacuum Electron Beam as a Universal Tool for Material Processing 被引量:1
14
作者 Thomas Hassel Nils Murray +1 位作者 Georgii Klimov Alexander Beniyash 《World Journal of Engineering and Technology》 2016年第4期598-607,共11页
Using a non-vacuum electron beam, a two-step process chain for plate materials is a feasible possibility. Cutting and welding can be performed in subsequent steps on the same machine for a highly productive process ch... Using a non-vacuum electron beam, a two-step process chain for plate materials is a feasible possibility. Cutting and welding can be performed in subsequent steps on the same machine for a highly productive process chain. The electron beam is a tool with high energy conversion efficiency, which is largely independent of the type of metal. Its high power density qualifies the non-vacuum electron beam as an outstanding energy source for the well-known NVEB welding as well as for high-speed cutting. Welding is possible with or without filler wire or shielding gas, depending on the application. The NVEB-cutting process employs a co-moving cutting head with a sliding seal for extremely high cutting speeds producing high quality edges. Due to direct removal of fumes and dust, NVEBC with local suction is an exceptionally clean and fast process. The NVEB welding process is possible directly after cutting, without further edge preparation. The potential directions of development of non-vacuum electron beam technologies are discussed. An exemplary two-step process chain using high-strength steel is presented to highlight possible application in industries such as general steel construction, automotive, shipbuilding, railway vehicle or crane construction. An analysis of the mechanical properties of the resulting weld seam is presented. 展开更多
关键词 WELDING High-Strength steels Non-Vacuum Electron beam Welding Non-Vacuum Electron beam Cutting
下载PDF
Effect of Laser Beam Welding Parameters on Microstructure and Properties of Duplex Stainless Steel 被引量:1
15
作者 Abdel-Monem El-Batahgy Abdel-Fattah Khourshid Thoria Sharef 《Materials Sciences and Applications》 2011年第10期1443-1451,共9页
The present study is concerned with laser beam welding and its effect on size and microstructure of fusion zone then, on mechanical and corrosion properties of duplex stainless steel welded joints. In this regard, inf... The present study is concerned with laser beam welding and its effect on size and microstructure of fusion zone then, on mechanical and corrosion properties of duplex stainless steel welded joints. In this regard, influence of different laser welding parameters was clarified. Both bead-on-plate and autogenously butt welded joints were made using carbon dioxide laser with a maximum output of 9 kW in the continuous wave mode. Welded joints were subjected to visual, dye penetrant and radiography tests before sectioning it for different destructive tests. Accelerated corrosion test was carried out based on tafel plot technique. The results achieved in this investigation disclosed that welding parameters play an important role in obtaining satisfactory properties of welded joint. High laser power and/or high welding speed together with adjusting laser focused spot at specimen surface have produced welded joints with a remarkable decrease in fusion zone size and an acceptable weld profile with higher weld depth/width ratio. Besides, acceptable mechanical and corrosion properties were obtained. Using nitrogen as a shielding gas has resulted in improving mechanical and corrosion properties of welded joints in comparison with argon shielding. This is related to maintaining proper ferrite/austenite balance in both weld metal and HAZ in case of nitrogen shielding. As a conclusion, laser power, welding speed, defocusing distance and type of shielding gas combination have to be optimized for obtaining welded joints with acceptable profile as well as mechanical and corrosion properties. 展开更多
关键词 DUPLEX STAINLESS steel LASER beam WELDING LASER Power WELDING Speed DEFOCUSING Distance Shielding Gas Type Fusion Zone Microstructure Mechanical Properties Corrosion Resistance
下载PDF
Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate 被引量:13
16
作者 卢亦焱 胡玲 +1 位作者 李杉 王康昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期701-707,共7页
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati... The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results. 展开更多
关键词 钢筋混凝土梁 碳纤维布加固 疲劳刚度 试验 碳纤维增强复合材料 疲劳载荷 跨中挠度 计算结果
下载PDF
Closed-form solution for shear lag effects of steel-concrete composite box beams considering shear deformation and slip 被引量:10
17
作者 周旺保 蒋丽忠 +1 位作者 刘志杰 刘小洁 《Journal of Central South University》 SCIE EI CAS 2012年第10期2976-2982,共7页
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs... Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant. 展开更多
关键词 界面滑移 混凝土板 剪力滞效应 剪切变形 封闭形式 箱形梁 钢梁 水平荷载作用
下载PDF
A new 3-D element formulation on displacement of steel-concrete composite box beam 被引量:2
18
作者 周凌宇 余志武 贺桂超 《Journal of Central South University》 SCIE EI CAS 2013年第5期1354-1360,共7页
Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were establi... Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were established. Analytic solutions of combined differential equations were also established. Partial degree of freedom was adopted to establish a new FEA element of three-dimensional beam, taking into account the slip effect. Slip and its first-order derivative were introduced into the nodes of composite box beams as generalized degree of freedom. Stiffness matrix and load array of beam elements were established. A three-dimensional nonlinear calculation program was worked out. The results show that the element is reliable and easy to divide and is suitable for special nonlinear analysis of large-span composite box beams. 展开更多
关键词 混凝土组合梁 元素 3-D 广义自由度 三维非线性 配方 位移 单元刚度
下载PDF
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet 被引量:9
19
作者 王廷 张秉刚 +2 位作者 陈国庆 冯吉才 唐奇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1829-1834,共6页
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy... Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched. 展开更多
关键词 304不锈钢 电子束焊接 钛合金 电子对 Ti 金属间化合物层 夹层板 扫描电子显微镜
下载PDF
Nonlinear behavior of concrete beams with hybrid FRP and stainless steel reinforcements 被引量:2
20
作者 方志 龚畅 +1 位作者 杨剑 CAMPBELL T I 《Journal of Central South University》 SCIE EI CAS 2009年第3期495-502,共8页
The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified t... The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment—curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unbonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity. 展开更多
关键词 部分预应力混凝土梁 非线性行为 不锈钢钢筋 玻璃钢 混合 纤维增强复合材料 预应力钢筋 模型假设
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部