期刊文献+
共找到3,682篇文章
< 1 2 185 >
每页显示 20 50 100
Damage Evolution of Ballastless Track Concrete Exposed to Flexural Fatigue Loads:The Application of Ultrasonic Pulse Velocity,Impact-echo and Surface Electrical Resistance Method
1
作者 杨志强 李化建 +4 位作者 WEN Jiaxing DONG Haoliang HUANG Fali WANG Zhen YI Zhonglai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期353-363,共11页
In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab... In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads. 展开更多
关键词 ballastless track fatigue damage ultrasonic pulse velocity IMPACT-ECHO surface electrical resistance
下载PDF
Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects
2
作者 Ying Wang Zheng Yan Yangyang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1339-1370,共32页
In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was... In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was written.Then,the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established,respectively.The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written,and the fretting fatigue lifewas further predicted.The results showthat the numerical simulation life obtained by the programin this paper has the same trend as the tested one;the error is only about 0.7%in the medium life area;When the normal contact force increases from 120 to 240 N,the fretting life of cable wire decreases by 25%;When the evolution of wear morphology and corrosion effect are considered simultaneously,the depth of the wear zone exceeds 0.08mm after 600,000 loads,which ismuch larger than 0.04 mmwhen only the evolution of wear morphology is considered.When the evolution of wear morphology and corrosion morphology is considered simultaneously,the damage covers the whole contact surface after 300,000 loads,and the penetrating damage zone forms after 450,000 loads,which is obviously faster than that when only the wearmorphology evolution is considered.Themethod proposed in this paper can provide a feasible numerical simulation scheme for the visualization of the damage process and accurate life prediction of cable-supported bridges. 展开更多
关键词 Fretting fatigue multiaxial fatigue electrochemical corrosion damage evolution life prediction
下载PDF
Analysis of Temperature Rise Characteristics and Fatigue Damage Degree of ACSR Broken Strand
3
作者 Jun Zhang Xiaobin Li +4 位作者 Long Zhao Zixin Li Shuo Wang Pan Yao Pengfei Dai 《Energy Engineering》 EI 2023年第3期617-631,共15页
In this paper,the research on ACSR temperature of broken strand and fatigue damage after broken strand is carried out.Conduct modeling and Analysis on the conductor through AnsoftMaxwell software.The distribution of m... In this paper,the research on ACSR temperature of broken strand and fatigue damage after broken strand is carried out.Conduct modeling and Analysis on the conductor through AnsoftMaxwell software.The distribution of magnetic force lines in the cross section of the conductor after strand breaking and the temperature change law of the conductor with the number of broken strands are analyzed.A model based on electromagnetic theory is established to analyze the distribution of magnetic lines of force in the cross section of the conductor after strand breaking and the temperature variation law of the conductor with the number of broken strands.The finite element analysis results show that with the increase in the number of broken strands,the cross-sectional area of the conductor decreases,the magnetic line of force of the inner conductor at the broken strand becomes denser and denser,and the electromagnetic loss of the conductor becomes larger and larger.Therefore,the temperature of the conductor at the broken strand becomes higher and higher.Then,the current carrying experiment of conductor is carried out for LGJ-240/30 conductor.It is found that the temperature rise at the junction of inner and outer layers at the broken strand is particularly obvious,and the temperature of inner aluminumconductor at the broken strand also increases with the increase of broken strand.According to the analysis of experimental data,with the increase of broken strands,the antivibration ability and service life of the conductor decrease.At the same time,under certain conditions of broken strand,the fatigue life of conductor increases with the increase of temperature. 展开更多
关键词 Steady-state temperature fatigue damage electromagnetic finite element magnetic line of force electromagnetic loss
下载PDF
Frequency Domain Fatigue Evaluation on SCR Girth-Weld Based on Structural Stress 被引量:1
4
作者 ZHANG Long ZHAO Tian-feng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期255-270,共16页
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t... The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR. 展开更多
关键词 SCR girth weld random vibration self(cross)power spectrum structural stress method biaxial fatigue damage
下载PDF
Influence of railway wheel tread damage on wheel-rail impact loads and the durability of wheelsets
5
作者 Michele Maglio Tore Vernersson +2 位作者 Jens C.O.Nielsen Anders Ekberg Elena Kabo 《Railway Engineering Science》 EI 2024年第1期20-35,共16页
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the... Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage. 展开更多
关键词 Wheel tread damage Rolling contact fatigue cluster Field measurements Dynamic vehicle-track interaction Wheel-rail impact load Wheelset durability
下载PDF
A critical review of wheel/rail high frequency vibration-induced vibration fatigue of railway bogie in China
6
作者 Xingwen Wu Zhenxian Zhang +7 位作者 Wubin Cai Ningrui Yang Xuesong Jin Ping Wang Zefeng Wen Maoru Chi Shuling Liang Yunhua Huang 《Railway Sciences》 2024年第2期177-215,共39页
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ... Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration. 展开更多
关键词 Wheel/rail high frequency vibration Vibration fatigue Railway bogie fatigue damage assessment
下载PDF
A fatigue damage model for rock salt considering the effects of loading frequency and amplitude 被引量:9
7
作者 Wang Yasong Ma Linjian +1 位作者 Fan Pengxian Chen Yan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期955-958,共4页
With the large-scale construction of underground gas storage in salt deposit, much more efforts have been made to assess the fatigue properties of rock salt. The fatigue damage processes the primary, steady,and accele... With the large-scale construction of underground gas storage in salt deposit, much more efforts have been made to assess the fatigue properties of rock salt. The fatigue damage processes the primary, steady,and accelerated phases, which is similar to the axial irrecoverable deformation compiled from the loci of the loading cycles of rock salt. The cumulative fatigue damage increases with a decrease in the loading frequency and with an increase in the stress amplitude within the range tested. To take into account the effects of loading frequency and amplitude on the fatigue behavior of rock salt subjected to cyclic loading, a low cycle fatigue damage model was exclusively established combined with the Manson–Coffin formula. The proposed damage evolution equation was validated with experimental results and proved to be efficient in the prediction of fatigue damage tendency of rock salt under different loading frequencies and amplitudes. 展开更多
关键词 Rock salt fatigue FREQUENCY Stress amplitude damage
下载PDF
STUDY ON FATIGUE DAMAGE BELOW THE FATIGUE LIMIT AND THE COAXING EFFECTS 被引量:5
8
作者 WU Zhixue LU Wenge and XU Hao1)(Fushun Petroleum institute, Fushun 113001, China)2)(State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal Research, ChineseAcademy of Sciences, Shenyang 110015, China)3)(Institute of Mechanical En 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第3期227-231,共5页
Rotary bending fatigue tests were carried out for smooth specimens of a mediumcarbon steel with two different grain sizes near the fatigue limit. The process of fatigue damagewas observed by replication method, and th... Rotary bending fatigue tests were carried out for smooth specimens of a mediumcarbon steel with two different grain sizes near the fatigue limit. The process of fatigue damagewas observed by replication method, and the effects of grain size,stress level and microstructure on surface damage were studied. The effect of following cycle stress level on the coaxing effects was also discussed. The fatigue limit is the maximum stress at which the short fatigue crack initiates and becomes a non-propagating crack.. The length of non-propagating crack is related to grain sizes and stress level. The coaxing effects disappear when the following stress level is greater than the critical value. 展开更多
关键词 fatigue damage fatigue limit coaxing effect
下载PDF
Revised damage evolution equation for high cycle fatigue life prediction of aluminum alloy LC4 under uniaxial loading 被引量:3
9
作者 Zhixin ZHAN Weiping HU +1 位作者 Miao ZHANG Qingchun MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1185-1196,共12页
The fatigue life prediction for components is a difficult task since many factors can affect the final fatigue life. Based on the damage evolution equation of Lemaitre and Desmorat, a revised two-scale damage evolutio... The fatigue life prediction for components is a difficult task since many factors can affect the final fatigue life. Based on the damage evolution equation of Lemaitre and Desmorat, a revised two-scale damage evolution equation for high cycle fatigue is presented according to the experimental data, in which factors such as the stress amplitude and mean stress are taken into account. Then, a method is proposed to obtain the material parameters of the revised equation from the present fatigue experimental data. Finally, with the utilization of the ANSYS parametric design language (APDL) on the ANSYS platform, the coupling effect between the fatigue damage of materials and the stress distribution in structures is taken into account, and the fatigue life of specimens is predicted. The outcome shows that the numerical prediction is in accord with the experimental results, indicating that the revised two-scale damage evolution model can be well applied for the high cycle fatigue life prediction under uniaxial loading. 展开更多
关键词 fatigue damage model continuum damage mechanics fatigue life highcycle fatigue finite element method
下载PDF
Methodology to Evaluate Fatigue Damage of High-Speed Train Welded Bogie Frames Based on On-Track Dynamic Stress Test Data 被引量:4
10
作者 Guangxue Yang Meng Wang +1 位作者 Qiang Li Ran Ding 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期181-188,共8页
The current method of estimating the fatigue life of railway structures is to calculating the equivalent stress amplitude based on the measured stress data. However, the random of the measured data is not considered. ... The current method of estimating the fatigue life of railway structures is to calculating the equivalent stress amplitude based on the measured stress data. However, the random of the measured data is not considered. In this paper, a new method was established to compute the equivalent stress amplitude to evaluate the fatigue damage based on the measurable randomness, since the equivalent stress is the key parameter for assessment of structure fatigue life and load derivation. The equivalent stress amplitude of a high-speed train welded bogie frame was found to obey normal distribution under uniform operation route that verified by on-track dynamic stress data, and the proposed model is, in effect, an improved version of the mathematical model used to calculate the equivalent stress amplitude. The data of a long-term, on-track dynamic stress test program was analyzed to find that the normal distribution parameters of equivalent stress amplitude values differ across different operation route. Thus, the fatigue damage of the high-speed train welded bogie frame can be evaluated by the proposed method if the running schedule of the train is known a priori. The results also showed that the equivalent stress amplitude of the region connected to the power system is more random than in other regions of the bogie frame. 展开更多
关键词 fatigue damage evaluation Equivalent STRESS amplitude On-track dynamic STRESS test Welded BOGIE frame of high-speed TRAIN
下载PDF
A CUMULATIVE FATIGUE DAMAGE RULE UNDER THE ALTERNATIVE OF CORROSION OR CYCLIC LOADING 被引量:3
11
作者 W.X. Yao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第1期65-71,共7页
Fatigue damage increases with the applied loading cycles in a cumulative manner and the material deteriorates with the corrosion time. A cumulative fatigue damage rule under the alternative of corrosion or cyclic load... Fatigue damage increases with the applied loading cycles in a cumulative manner and the material deteriorates with the corrosion time. A cumulative fatigue damage rule under the alternative of corrosion or cyclic loading was proposed. The specimens of aluminum alloy LY12-CZ soaked in corrosive liquid for different times were tested under the constant amplitude cyclic loading to obtain S-N curves. The test was carried out to verify the proposed cumulative fatigue damage rule under the different combinations among corrosion time, loading level, and the cycle numbers. It was shown that the predicted residual fatigue lives showed a good agreement with the experimental results and the proposed rule was simple and can be easily adopted. 展开更多
关键词 CORROSION fatigue cumulative fatigue damage rule Miner's rule
下载PDF
Cross-Flow VIV-Induced Fatigue Damage of Deepwater Steel Catenary Riser at Touch-Down Point 被引量:3
12
作者 王坤鹏 唐文勇 薛鸿祥 《China Ocean Engineering》 SCIE EI CSCD 2014年第1期81-93,共13页
A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at t... A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at touch-down point (TDP). The model will give more reasonable simulation of SCR response near TDP than the previous pinned truncation model. In the present model, the hysteretic riser-soil interaction model is simplified as the linear spring and damper to simulate the seafloor, and the damping is obtained according to the dissipative power during one periodic riser-soil interaction. In order to validate the model, the comparison with the field measurement and the results predicted by Shear 7 program of a full-scale steel catenary riser is carried out. The main induced modes, mode frequencies and response amplitude are in a good agreement. Furthermore, the parametric studies are carried out to broaden the understanding of the fatigue damage sensitivity to the upper end in-plane offset and seabed characteristics. In addition, the fatigue stress comparison at TDP between the truncation riser model and the present full riser model shows that the existence of touch-down zones is very important for the fatigue damage assessment of steel catenary riser at TDP. 展开更多
关键词 VIV steel catenary riser touch-down point riser-soil interaction fatigue damage
下载PDF
New approach based on continuum damage mechanics with simple parameter identification to fretting fatigue life prediction 被引量:2
13
作者 Fei SHEN Weiping HU Qingchun MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1539-1554,共16页
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress ch... A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method. 展开更多
关键词 fretting fatigue continuum damage mechanics WEAR fatigue life finite element (FE) analysis
下载PDF
Reliability Analysis Based on a Nonlinear Fatigue Damage Accumulation Model 被引量:4
14
作者 袁容 李海庆 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期741-743,共3页
A modified nonlinear fatigue damage accumulation model based on the Manson-Halford theory was presented,and the new model was developed for fatigue life prediction under constant and variable amplitude loading, which ... A modified nonlinear fatigue damage accumulation model based on the Manson-Halford theory was presented,and the new model was developed for fatigue life prediction under constant and variable amplitude loading, which took the effects of the load interactions and the phenomenon of material's strength degradation into account. The experimental data of the 30 Cr Mn Si A and the LY-12 cz from literature were used to verify the proposed model. And from the good agreement between the experimental data and predicted results,we can see it clear that the proposed method can be applied to predicting fatigue life under different loadings. 展开更多
关键词 fatigue damage accumulation Manson-Halford theory load interactions strength degradation
下载PDF
Fatigue crack propagation in a helicopter component subjected to impact damage 被引量:2
15
作者 M.Fossati M.Pagani +1 位作者 M.Giglio A.Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期416-428,共13页
Damage tolerant methodology is increasingly used in aeronautical components,especially due the fact that the Aviation Regulation requires such an assessment in case an accidental damage occurs.At present,there is a st... Damage tolerant methodology is increasingly used in aeronautical components,especially due the fact that the Aviation Regulation requires such an assessment in case an accidental damage occurs.At present,there is a strong and actual interest in applying such procedures to helicopter components that are subjected to high frequency cyclic loads.In this paper,an investigation on a damaged transmission shaft for a tail rotor transmission of an actual helicopter has been carried out focusing on the fatigue crack propagation.A complete sequence of experimental tests was performed in order to create an actual ballistic damage and to subsequently check the damage tolerant behaviour.The shaft was damaged by oblique ballistic impact and was subsequently subjected to torsional fatigue loading.During the fatigue cycles several cracks propagated from the ballistic damages.Both of these steps(impact and fatigue loading)were also simulated by a complex modelling approach based on Finite Element Models and fracture mechanics theory.The comparison between the experimental and numerical results shows a good agreement but it underlines the need for a very refined modelling technique capable to replicate all the features associated with the damage in order to reliably simulate the subsequent propagation phase. 展开更多
关键词 Ballistic impact damage fatigue Crack propagation
下载PDF
Simulation of Damage Evolution and Study of Multi-Fatigue Source Fracture of Steel Wire in Bridge Cables under the Action of Pre-Corrosion and Fatigue 被引量:2
16
作者 Ying Wang Yuqian Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第8期375-419,共45页
A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper.Based on pitting accelerated crack nucleati... A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper.Based on pitting accelerated crack nucleation theory in combination with continuum mechanics,cellular automata technology(CA)and finite element(FE)analysis,the damage evolution process of steel wire under pre-corrosion and fatigue is simulated.This method automatically generates a high-strength steel wire model with initial random pitting defects,and on the basis of this model,the fatigue damage evolution process is simulated;thus,the fatigue life and fatigue performance of the corroded steel wire can be evaluated.A comparison of the numerical simulation results with the experimental results shows that this method has strong reliability and practicability in predicting the fatigue life of corroded steel wire and simulating the damage evolution process.Based on the method proposed in this paper,the fatigue life of steel wires with different degrees of corrosion under the action of different stress levels is predicted.The results show that as the degree of corrosion increases,the fatigue properties of steel wire gradually decrease,and the influence of existing pitting corrosion on fatigue life is far greater than that on mass loss.Stress concentration is the main cause of fatigue life of corroded steel wire in advance attenuation.In addition,the fracture process of steel wire with multi-fatigue sources and the effect of the number and distribution of pits on the fatigue life of steel wire are studied.The results show that,compared with a stepped pitting distribution,a planar pitting distribution has a greater impact on the damage evolution process.The fatigue life of steel wire is positively correlated with the number of pits and the angle and distance between pits. 展开更多
关键词 Steel wire damage evolution PRE-CORROSION and fatigue multi-fatigue SOURCE FRACTURE cellular AUTOMATA
下载PDF
Fatigue Damage Modeling for Partially Prestressed Concrete Beams under Repeated Loadings with Variable Amplitude 被引量:2
17
作者 冯秀峰 宋玉普 朱美春 《Journal of Southwest Jiaotong University(English Edition)》 2006年第3期258-264,共7页
A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement ... A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results. 展开更多
关键词 Prestressed concrete beam fatigue damage Nonlinear analysis Stress redistribution
下载PDF
A Fatigue Damage Model for FRP Composite Laminate Systems Based on Stiffness Reduction 被引量:2
18
作者 Ying Zhao Mohammad Noori +2 位作者 Wael A.Altabey Ramin Ghiasi Zhishen Wu 《Structural Durability & Health Monitoring》 EI 2019年第1期85-103,共19页
This paper introduces a stiffness reduction based model developed by the authors to characterize accumulative fatigue damage in unidirectional plies and(0/θ/0)composite laminates in fiber reinforced polymer(FRP)compo... This paper introduces a stiffness reduction based model developed by the authors to characterize accumulative fatigue damage in unidirectional plies and(0/θ/0)composite laminates in fiber reinforced polymer(FRP)composite laminates.The proposed damage detection model is developed based on a damage evolution mechanism,including crack initiation and crack damage progress in matrix,matrix-fiber interface and fibers.Research result demonstrates that the corresponding stiffness of unidirectional composite laminates is reduced as the number of loading cycles progresses.First,three common models in literatures are presented and compared.Tensile viscosity,Young’s modulus and ultimate tensile stress of composites are incorporated as key factors in this model and are modified in accordance with temperature.Four types of FRP composite property parameters,including Carbon Fiber Reinforced Polymer(CFRP),Aramid Fiber Reinforced Polymer(AFRP),Glass Fiber Reinforced Polymer(GFRP),and Basalt Fiber Reinforced Polymer(BFRP),are considered in this research,and a comparative parameter study of FRP unidirectional composite laminates with different off-angle plies using control variate method are discussed.It is concluded that the relationship between the drop in stiffness and the number of cycles also shows three different regions,following the mechanism of damage of FRP composites and the matrix is the dominant factor determined by temperature,while fiber strength is the dominant factor that determine the reliability of composite. 展开更多
关键词 FRP laminates fatigue damage model stiffness reduction thermal effect
下载PDF
A Numerical Investigation of Vortex-Induced Vibration Response and Fatigue Damage for Flexible Cylinders Under Combined Uniform and Oscillatory Flow 被引量:1
19
作者 YUAN Yu-chao XUE Hong-xiang TANG Wen-yong 《China Ocean Engineering》 SCIE EI CSCD 2020年第4期488-499,共12页
Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to inves... Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases.Firstly,the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows.Then,forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T^*and combined ratio r.The combined flow cases are classified into three categories to investigate the effect of r on cylinder’s dynamic response,and the effect of T*is described under long and short period cases.Finally,fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T^*.The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis. 展开更多
关键词 vortex-induced vibration fatigue damage flexible cylinders combined flow
下载PDF
Bi-variable damage model for fatigue life prediction of metal components 被引量:1
20
作者 Miao Zhang Qing-Chun Meng Xing Zhang Wei-Ping Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期416-425,共10页
Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and d... Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and damage evolution criteria. Furthermore,damage evolution equations of time rate are established by the generalized Drucker's postulate. The damage evolution equation of cycle rate is obtained by integrating the time damage evolution equations,and the fatigue life prediction method for smooth specimens under repeated loading with constant strain amplitude is constructed. Likewise,for notched specimens under the repeated loading with constant strain amplitude,the fatigue life prediction method is obtained on the ground of the theory of conservative integral in damage mechanics. Thus,the material parameters in the damage evolution equation can be obtained by reference to the fatigue test results of standard specimens with stress concentration factor equal to 1,2 and 3. 展开更多
关键词 Bi-variable damage model - damage evolution equation . Life prediction - fatigue . damage mechanics
下载PDF
上一页 1 2 185 下一页 到第
使用帮助 返回顶部