This paper presents a planar ultra-wideband (UWB) bandpass filter with sharp out-of-band rejection performance. The filter is formed by a folded multiple-mode resonator to realize high performance in an operation band...This paper presents a planar ultra-wideband (UWB) bandpass filter with sharp out-of-band rejection performance. The filter is formed by a folded multiple-mode resonator to realize high performance in an operation band from 3.3 to 10 GHz with a very compact size of 20 mm × 20 mm × 0.5 mm. An extra notched band centered at 5.8 GHz is further accomplished by etching a Hilbert fractal curve slit on the filter without the necessity of readjusting the geometrical parameters. The simulated and measured results are in good agreement.展开更多
A novel, compact, and highly selective ultra-wideband (UWB) bandpass filter with a narrow notched band is presented. Apart from having a basic structure of a slotline multiple-mode resonator (MMR) and microstrip f...A novel, compact, and highly selective ultra-wideband (UWB) bandpass filter with a narrow notched band is presented. Apart from having a basic structure of a slotline multiple-mode resonator (MMR) and microstrip feed lines, this novel design introduces a cross-coupling between the input and output feed lines to enhance the filter selectivity. The design strictly follows the theory and verified by electromagnetic (EM) simulation and experiments. In addition, the narrow notched band is introduced by embedding a pair of split ring resonators (SRR) in order to reject any undesired existing radio signals that may interfere with the Federal Communications Commission (FCC)-defined UWB band. By changing the structural parameters of SRR, it can be easily tuned to any desired frequency. This filter can be integrated in UWB communication systems and efficiently improve the interference immunity from undesired signals such as wireless local area network (WLAN).展开更多
Miniaturized Ultra-Wideband (UWB) microstrip bandpass filter with wide passband is presented. The filter is developed based on modified multiple mode resonator, which is formed by transversely attaching three pairs of...Miniaturized Ultra-Wideband (UWB) microstrip bandpass filter with wide passband is presented. The filter is developed based on modified multiple mode resonator, which is formed by transversely attaching three pairs of non-uniform and folded stubs with lowpass and highpass sections. Both sides of high-impedance section are linked with two feed lines via direct coupled lines, resulting UWB bandpass filter. The designed filter provides 7 GHz passband between 2.5 and 9.5 GHz with approximately, –0.5 dB insertion loss, –35 dB minimum return loss at 6.85 GHz, linear phase over the passband and 110% of fractional bandwidth at –3 dB. The computed group delay variation in the passband for the filter is 0.02 ns. The overall dimension of the filter is 10.7 mm (length) × 3 mm (width) × 1.6 mm (thickness).展开更多
This paper presents an experimental verification of ultra-wideband bandpass filter (BPF) for UWB applications and notch filter in order to suppress 5 GHz narrowband service when it coexists with UWB radio system. The ...This paper presents an experimental verification of ultra-wideband bandpass filter (BPF) for UWB applications and notch filter in order to suppress 5 GHz narrowband service when it coexists with UWB radio system. The BPF consists of a hexagonal shaped multiple mode resonator (MMR) with interdigital coupling at both sides. Notch filter is derived from BPF by introducing four embedded open stubs near by the MMR. The developed BPF has insertion loss of –2 dB and the minimum return loss about –35 dB, while for the notch filter they are –3 dB and –40 dB respectively. The group delay obtained for bandpass filter is below 0.2 ns and for notch filter, it is about 0.3 ns. With the above structural features the overall dimensions of the filter is 38 mm (length) × 3.2 mm (breadth) × 1.6 mm (height) and the percentage fractional bandwidth (FBW) of the proposed filter is about 120.48%.展开更多
Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filte...Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.展开更多
文摘This paper presents a planar ultra-wideband (UWB) bandpass filter with sharp out-of-band rejection performance. The filter is formed by a folded multiple-mode resonator to realize high performance in an operation band from 3.3 to 10 GHz with a very compact size of 20 mm × 20 mm × 0.5 mm. An extra notched band centered at 5.8 GHz is further accomplished by etching a Hilbert fractal curve slit on the filter without the necessity of readjusting the geometrical parameters. The simulated and measured results are in good agreement.
基金supported by the Natural Science Foundation of CQ CSTC(CSTC2010DD2412)Chongqing Municipal Science and Technology Commission of Natural Science Foundation Project(KJ100512)the Research Fund Project of Chongqing University of Posts and Telecommunications(A2011-51)
文摘A novel, compact, and highly selective ultra-wideband (UWB) bandpass filter with a narrow notched band is presented. Apart from having a basic structure of a slotline multiple-mode resonator (MMR) and microstrip feed lines, this novel design introduces a cross-coupling between the input and output feed lines to enhance the filter selectivity. The design strictly follows the theory and verified by electromagnetic (EM) simulation and experiments. In addition, the narrow notched band is introduced by embedding a pair of split ring resonators (SRR) in order to reject any undesired existing radio signals that may interfere with the Federal Communications Commission (FCC)-defined UWB band. By changing the structural parameters of SRR, it can be easily tuned to any desired frequency. This filter can be integrated in UWB communication systems and efficiently improve the interference immunity from undesired signals such as wireless local area network (WLAN).
文摘Miniaturized Ultra-Wideband (UWB) microstrip bandpass filter with wide passband is presented. The filter is developed based on modified multiple mode resonator, which is formed by transversely attaching three pairs of non-uniform and folded stubs with lowpass and highpass sections. Both sides of high-impedance section are linked with two feed lines via direct coupled lines, resulting UWB bandpass filter. The designed filter provides 7 GHz passband between 2.5 and 9.5 GHz with approximately, –0.5 dB insertion loss, –35 dB minimum return loss at 6.85 GHz, linear phase over the passband and 110% of fractional bandwidth at –3 dB. The computed group delay variation in the passband for the filter is 0.02 ns. The overall dimension of the filter is 10.7 mm (length) × 3 mm (width) × 1.6 mm (thickness).
文摘This paper presents an experimental verification of ultra-wideband bandpass filter (BPF) for UWB applications and notch filter in order to suppress 5 GHz narrowband service when it coexists with UWB radio system. The BPF consists of a hexagonal shaped multiple mode resonator (MMR) with interdigital coupling at both sides. Notch filter is derived from BPF by introducing four embedded open stubs near by the MMR. The developed BPF has insertion loss of –2 dB and the minimum return loss about –35 dB, while for the notch filter they are –3 dB and –40 dB respectively. The group delay obtained for bandpass filter is below 0.2 ns and for notch filter, it is about 0.3 ns. With the above structural features the overall dimensions of the filter is 38 mm (length) × 3.2 mm (breadth) × 1.6 mm (height) and the percentage fractional bandwidth (FBW) of the proposed filter is about 120.48%.
文摘Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.