A novel wideband beam-forming structure with constant beam width based on complex coefficients (FIR) digital filters used in underwater acoustic communication is proposed. First,the received signals are compensated wi...A novel wideband beam-forming structure with constant beam width based on complex coefficients (FIR) digital filters used in underwater acoustic communication is proposed. First,the received signals are compensated with integer sampling period by using delay line. Then their complex envelopes are calculated by using frequency shift method. Finally,the envelopes are weighted by using complex coefficients FIR digital filters whose coefficients are optimized. Simulation results show that,in the communication band,the maximum difference between the designed beam and desired beam is less than 0.3 dB when the ratio of communication band to carrier frequency is 0.85.展开更多
To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio ...To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio (MSLR) is proposed for broadband beam-forming. This weighted method can be implemented by using the following steps. Firstly, optimize the spatial spectrum of each frequency unit by the second-order cone programming (SOCP), and obtain the optimized spatial spectrum with lower side lobe. Secondly, construct weighting factors based on the MSLR of the optimized spatial spectrums to from weight factors. Lastly, cumulate the spatial spectrum of each frequency unit via the weight statistical method of this paper. This method can restrain the disturbance of background noise, enhance the output signal-to-noise ratio (SNR), and overcome the difficulty of traditional four-dimensional display. The theoretical analysis and simulation results both verify that this method can well enhance the spatial spectrum of line spectrum units, restrain the spatial spectrum of background noise units, and improve the performance of the broadband beam-forming.展开更多
We have described a method of obtaining useful information from noisy seismic refraction data. The simple method, tagged beam-forming technique, is based on the basic time-distance equations of refraction seismology. ...We have described a method of obtaining useful information from noisy seismic refraction data. The simple method, tagged beam-forming technique, is based on the basic time-distance equations of refraction seismology. It involves basically of introducing relative time delays to individual seismic traces of seismic refraction spread to correct for the non-coincidence of the incidence seismic energy at different geophones, and averaging the traces to obtain the beam. The assumption here is that the signal is coherent between the geophones while the noise is random, and for groups of geophones corresponding to the same refraction segments of the travel time curve, this basic assumption is valid. The process of beam forming therefore leads to improvement in signal-to-noise ratio (SNR) and correct determination of the intercept times which are subsequently used to compute other geologic layer parameters. The ability of the applied technique to filter out or minimize random noise has been tested using a modified random number routine. The performance test on computation of geologic layer parameters using very noisy synthetic data reveals that the method is still very reliable even with very poor quality data having SNR as small as 0.05.展开更多
Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Se...Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to enhance the performance analysis of beam-forming for smart antennas systems using N elements for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. Our results have shown tremendous improvement over the previous work was done using Uniform Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and computational speed for normalized fitness values.展开更多
Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spec...Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.展开更多
This paper presents a VHF CMOS VCO. The most significant improvement on the VCO is that the cross-coupled MOSFET pairs are divided into several switchable parts so the characteristics can compensate the state change t...This paper presents a VHF CMOS VCO. The most significant improvement on the VCO is that the cross-coupled MOSFET pairs are divided into several switchable parts so the characteristics can compensate the state change that results from the frequency tuning of the oscillator. This VCO is implemented in 0, 18μm CMOS with a core area of about 550μm × 700μm. The test results show that the tuning range covers 31-111MHz with a power consumption between 0.3-6. 9mW and a phase noise at a 100kHz offset of about - 110dBc/Hz.展开更多
A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz cente...A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.展开更多
A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to ex...A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.展开更多
A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz abso...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.展开更多
The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to...The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.展开更多
In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that...In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.展开更多
In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when ...In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.展开更多
A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U-shaped structured magnetic resonators loa...A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U-shaped structured magnetic resonators loaded with lumped resistors, a dielectric substrate, and a metal plate. We simulated, fabricated, measured, and analyzed the MA. The experimental results show that the reflectance (S11) is below -10 dB at normal incidence in the frequency range of 7.7 GHz 18 GHz, and the peak value is about -20 dB. Simulated power loss density distributions indicate that wideband absorption of the MA is mainly attributable to the lumped resistors in the magnetic resonator. Further investigations indicate that the distance between two unit cells along the magnetic field direction significantly influences the performance of the MA.展开更多
To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A c...The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results.展开更多
In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on it...In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on iterative adaptive spectral reconstruction, is proposed. Firstly, the wideband signals are divided into several narrowband signals of different frequency bins by discrete Fourier transformation(DFT). Then, the signal matched power spectrum in referenced frequency bins is computed, which can form the initial covariance matrix. Finally, the linear restrained minimum variance spectral(Capon spectral) of signals in other frequency bins are reconstructed using sequential iterative means, so the DOA can be estimated by the locations of spectral peaks. Theoretical analysis and simulation results show the proposed method based on the iterative spectral reconstruction for the covariance matrices of all sub-bands can avoid the problem of determining the signal subspace accurately with the coherent signal subspace method under the conditions of small samples and low signal to noise ratio(SNR), and it can also realize full dimensional focusing of different sub-band data, which can be applied to coherent sources and can significantly improve the accuracy of DOA estimation.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two ...A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.展开更多
We propose to achieve a high-efficiency wideband flat focusing reflector using metasurfaces. To obtain the wide band,the polarization conversion mechanism is introduced into the reflector design, based on the fact tha...We propose to achieve a high-efficiency wideband flat focusing reflector using metasurfaces. To obtain the wide band,the polarization conversion mechanism is introduced into the reflector design, based on the fact that the reflection phases of cross-polarized waves are linear in quite a wide band. This facilitates the design of wideband parabolic reflection phase profile. As an example, we design two reflective focusing metasurfaces with one- and two-dimensional in-plane parabolic reflection phase profiles based on elliptical split ring resonators(ESRRs). Both the simulation and experiment verify the wideband focusing performance in 10.0–22.0 GHz of the flat reflectors. Due to the wide operating band, such reflectors have important application values in communication, detection, measurement, imaging, etc.展开更多
The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the charact...The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the characteristic parameters of echo signals is adopted to develop a detector of range-spread targets in Gaussian noise.Firstly,the characteristic parameters of the return signals in the entire range profiles of radar are investigated.Secondly,the clustering analysis of the characteristic parameter matrix is discussed to extract the test statistic of echoes.Finally,the probabilities of detection and false alarm of the proposed detector are provided.Theoretical analysis shows that the proposed detector does not need the prior knowledge about the spatial distribution of the target scattering centers in practical scenarios,and it is simple and robust even in low signal-to-noise ratio(low-SNR)scenarios.Monte Carlo(MC)simulations reveal that the detection performance of the proposed detector outperforms the conventional detectors.展开更多
基金Sponsored by the project supported by the National Natural Science Foundation of China(60672046)the Natural Science Foundation of Fujian Province of China(2010J05139)
文摘A novel wideband beam-forming structure with constant beam width based on complex coefficients (FIR) digital filters used in underwater acoustic communication is proposed. First,the received signals are compensated with integer sampling period by using delay line. Then their complex envelopes are calculated by using frequency shift method. Finally,the envelopes are weighted by using complex coefficients FIR digital filters whose coefficients are optimized. Simulation results show that,in the communication band,the maximum difference between the designed beam and desired beam is less than 0.3 dB when the ratio of communication band to carrier frequency is 0.85.
基金supported by the National Natural Science Foundation of China(Grant No.61372180)the National Key Scientific Instrument Equipment Development Project of China(Grant No.2013YQ140431)
文摘To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio (MSLR) is proposed for broadband beam-forming. This weighted method can be implemented by using the following steps. Firstly, optimize the spatial spectrum of each frequency unit by the second-order cone programming (SOCP), and obtain the optimized spatial spectrum with lower side lobe. Secondly, construct weighting factors based on the MSLR of the optimized spatial spectrums to from weight factors. Lastly, cumulate the spatial spectrum of each frequency unit via the weight statistical method of this paper. This method can restrain the disturbance of background noise, enhance the output signal-to-noise ratio (SNR), and overcome the difficulty of traditional four-dimensional display. The theoretical analysis and simulation results both verify that this method can well enhance the spatial spectrum of line spectrum units, restrain the spatial spectrum of background noise units, and improve the performance of the broadband beam-forming.
文摘We have described a method of obtaining useful information from noisy seismic refraction data. The simple method, tagged beam-forming technique, is based on the basic time-distance equations of refraction seismology. It involves basically of introducing relative time delays to individual seismic traces of seismic refraction spread to correct for the non-coincidence of the incidence seismic energy at different geophones, and averaging the traces to obtain the beam. The assumption here is that the signal is coherent between the geophones while the noise is random, and for groups of geophones corresponding to the same refraction segments of the travel time curve, this basic assumption is valid. The process of beam forming therefore leads to improvement in signal-to-noise ratio (SNR) and correct determination of the intercept times which are subsequently used to compute other geologic layer parameters. The ability of the applied technique to filter out or minimize random noise has been tested using a modified random number routine. The performance test on computation of geologic layer parameters using very noisy synthetic data reveals that the method is still very reliable even with very poor quality data having SNR as small as 0.05.
文摘Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to enhance the performance analysis of beam-forming for smart antennas systems using N elements for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. Our results have shown tremendous improvement over the previous work was done using Uniform Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and computational speed for normalized fitness values.
基金supported by the Key Projects of the 2022 National Defense Science and Technology Foundation Strengthening Plan 173 (Grant No.2022-173ZD-010)the Equipment PreResearch Foundation of The State Key Laboratory (Grant No.6142101200204)。
文摘Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.
文摘This paper presents a VHF CMOS VCO. The most significant improvement on the VCO is that the cross-coupled MOSFET pairs are divided into several switchable parts so the characteristics can compensate the state change that results from the frequency tuning of the oscillator. This VCO is implemented in 0, 18μm CMOS with a core area of about 550μm × 700μm. The test results show that the tuning range covers 31-111MHz with a power consumption between 0.3-6. 9mW and a phase noise at a 100kHz offset of about - 110dBc/Hz.
文摘A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.
文摘A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.
文摘The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z264)
文摘In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.
基金supported by the National Natural Science Foundation of China(No.61571146)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.
基金Project supported by the National Natural Science Foundation of China(Grant No.51207060)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20090142110004)
文摘A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U-shaped structured magnetic resonators loaded with lumped resistors, a dielectric substrate, and a metal plate. We simulated, fabricated, measured, and analyzed the MA. The experimental results show that the reflectance (S11) is below -10 dB at normal incidence in the frequency range of 7.7 GHz 18 GHz, and the peak value is about -20 dB. Simulated power loss density distributions indicate that wideband absorption of the MA is mainly attributable to the lumped resistors in the magnetic resonator. Further investigations indicate that the distance between two unit cells along the magnetic field direction significantly influences the performance of the MA.
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
基金supported by the National "863" High Technology Research and Development Program of China(2007AA703428)
文摘The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results.
基金supported by the National Natural Science Foundation of China(61671352)the open foundation of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)(CRKL160206)Xi’an University of Science and Technology Doctor(after)Start Gold Project(2017QDJ018)
文摘In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on iterative adaptive spectral reconstruction, is proposed. Firstly, the wideband signals are divided into several narrowband signals of different frequency bins by discrete Fourier transformation(DFT). Then, the signal matched power spectrum in referenced frequency bins is computed, which can form the initial covariance matrix. Finally, the linear restrained minimum variance spectral(Capon spectral) of signals in other frequency bins are reconstructed using sequential iterative means, so the DOA can be estimated by the locations of spectral peaks. Theoretical analysis and simulation results show the proposed method based on the iterative spectral reconstruction for the covariance matrices of all sub-bands can avoid the problem of determining the signal subspace accurately with the coherent signal subspace method under the conditions of small samples and low signal to noise ratio(SNR), and it can also realize full dimensional focusing of different sub-band data, which can be applied to coherent sources and can significantly improve the accuracy of DOA estimation.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
文摘A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331005,11274389,and 11204378)the Postdoctoral Science Foundation of China(Grant Nos.2013M532131 and 2014M552451)the Foundation of the Author of National Excellent Doctoral Dissertation of China(Gran No.201242)
文摘We propose to achieve a high-efficiency wideband flat focusing reflector using metasurfaces. To obtain the wide band,the polarization conversion mechanism is introduced into the reflector design, based on the fact that the reflection phases of cross-polarized waves are linear in quite a wide band. This facilitates the design of wideband parabolic reflection phase profile. As an example, we design two reflective focusing metasurfaces with one- and two-dimensional in-plane parabolic reflection phase profiles based on elliptical split ring resonators(ESRRs). Both the simulation and experiment verify the wideband focusing performance in 10.0–22.0 GHz of the flat reflectors. Due to the wide operating band, such reflectors have important application values in communication, detection, measurement, imaging, etc.
基金supported by the National Natural Science Foundation of China(61571043)the 111 Project of China(B14010)
文摘The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the characteristic parameters of echo signals is adopted to develop a detector of range-spread targets in Gaussian noise.Firstly,the characteristic parameters of the return signals in the entire range profiles of radar are investigated.Secondly,the clustering analysis of the characteristic parameter matrix is discussed to extract the test statistic of echoes.Finally,the probabilities of detection and false alarm of the proposed detector are provided.Theoretical analysis shows that the proposed detector does not need the prior knowledge about the spatial distribution of the target scattering centers in practical scenarios,and it is simple and robust even in low signal-to-noise ratio(low-SNR)scenarios.Monte Carlo(MC)simulations reveal that the detection performance of the proposed detector outperforms the conventional detectors.