In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use par...In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use parallel low rate analog to digital conversions(ADCs) and fewer storage units for wideband spectrum signal sampling.The proposed scheme uses multiple low rate congitive radios(CRs) collecting compressed samples through AICs distritbutedly and recover the signal spectrum jointly.A general joint sparsity model is defined in this scenario,along with a universal recovery algorithm based on simultaneous orthogonal matching pursuit(S-OMP).Numerical simulations show this algorithm outperforms current existing algorithms under this model and works competently under other existing models.展开更多
New generation passive optical network aims at providing more than 100 Gb/s capacity. Thanks to recent progress enabling a variety of optical transceivers up to 40 Gb/s, many evolution possibilities to 200G PONs (pas...New generation passive optical network aims at providing more than 100 Gb/s capacity. Thanks to recent progress enabling a variety of optical transceivers up to 40 Gb/s, many evolution possibilities to 200G PONs (passive optical network) could be investigated. This work proposes two directly deployable cases of evolution to 200G PON based on the combination of these improved optical transceivers and WDM (wavelength division multiplexing). The physical layer of the optical network has been simulated with OptiSystem software to show the communication links performances behavior when considering key components parameters in order to achieve good network design for a given area. The complexity of the proposed architectures and financial cost comparisons are also discussed.展开更多
基金Project supported by the National Fundamental Research (Grant Nos.2009CB3020402,2010CB731803)the National Natural Science Foundation of China (Grant Nos.60702046,60832005,60972050,60632040)the Natural High-Technology Research and Development Program of China (Grant Nos.2007AA01Z267,2009AA01Z248,2009AA011802)
文摘In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use parallel low rate analog to digital conversions(ADCs) and fewer storage units for wideband spectrum signal sampling.The proposed scheme uses multiple low rate congitive radios(CRs) collecting compressed samples through AICs distritbutedly and recover the signal spectrum jointly.A general joint sparsity model is defined in this scenario,along with a universal recovery algorithm based on simultaneous orthogonal matching pursuit(S-OMP).Numerical simulations show this algorithm outperforms current existing algorithms under this model and works competently under other existing models.
文摘New generation passive optical network aims at providing more than 100 Gb/s capacity. Thanks to recent progress enabling a variety of optical transceivers up to 40 Gb/s, many evolution possibilities to 200G PONs (passive optical network) could be investigated. This work proposes two directly deployable cases of evolution to 200G PON based on the combination of these improved optical transceivers and WDM (wavelength division multiplexing). The physical layer of the optical network has been simulated with OptiSystem software to show the communication links performances behavior when considering key components parameters in order to achieve good network design for a given area. The complexity of the proposed architectures and financial cost comparisons are also discussed.