The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem,...The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem, a novel method for wideband signals by sparse recovery in the frequency domain is proposed. The optimization functions are found and solved by the received data at every frequency, on this basis, the sparse support set is obtained, then the direction of arrival (DOA) is acquired by integrating the information of all frequency bins, and the initial signal can also be recovered. This method avoids the error caused by sparse recovery methods based on grid division, and the degree of freedom is also expanded by array transformation, especially it has a preferable performance under the circumstances of a small number of snapshots and a low signal to noise ratio (SNR).展开更多
In array signal processing,number of signals is often a premise of estimating other parameters.For the sake of determining signal number in the condition of strong additive noise or a little sample data,an algorithm f...In array signal processing,number of signals is often a premise of estimating other parameters.For the sake of determining signal number in the condition of strong additive noise or a little sample data,an algorithm for detecting number of wideband signals is provided.First,technique of focusing is used for transforming signals into a same focusing subspace.Then the support vector machine(SVM)can be deduced by the information of eigenvalues and corresponding eigenvectors.At last,the signal number can be determined with the obtained decision function.Several simulations have been carried on verifying the proposed algorithm.展开更多
For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based ...For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low.展开更多
In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when ...In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.展开更多
This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked la...This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked laser, and the sampling rate is multiplied via a time-wavelength interleaving scheme. According to the laboratory test, an X-band linear frequency modulation signal is detected and digitized by the PADC system. The channel mismatch effect in wideband signal detection is compensated via an algorithm based on a short-time Fourier transform. Consequently, the signal-to-distortion ratio (SDR) of the wideband signal detection is enhanced to the comparable SDR of the single-tone signal detection.展开更多
To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
According to the features of the wideband underwater acoustic signals,an algorithm for the wideband ambiguity function is put forward based on Mellin transform.The wideband acoustic signal processing using the fast Me...According to the features of the wideband underwater acoustic signals,an algorithm for the wideband ambiguity function is put forward based on Mellin transform.The wideband acoustic signal processing using the fast Mellin transform is also explored.The theoretical analysis and simulation results show that the algorithm has not only high computation efficiency but also good concentration in wideband ambiguity domain.It suits for the wideband underwater acoustic signal processing.展开更多
This paper analyzes mathematically the crucial aspects of signal processing in a Multi-Band (MB) Orthogonal Frequency Division Multiplexing (OFDM) based system considering Ultra-Wideband (UWB) channel environment. In ...This paper analyzes mathematically the crucial aspects of signal processing in a Multi-Band (MB) Orthogonal Frequency Division Multiplexing (OFDM) based system considering Ultra-Wideband (UWB) channel environment. In the process of analysis, it emphasizes the significant features of UWB receiver design in comparison with ‘conventional’ narrow-band system. The analysis shows that the high dispersive nature of a frequency selective UWB channel effects the design of different signal processing blocks like pre-select filter, low noise amplifier (LNA) and analog-to-digital (A/D) converter in the receiver front end. The characteristic functions of each of these stages are now dominated by the channel characteristics and it needs to be modified accordingly. This analysis is extended further with the study of frequency offset error and its correction. The unbiased Cramer Rao Lower Bound (CRLB) of estimation error is calculated and supported by computer simulation. The performance of an MB-OFDM system with frequency offset correction in terms of Bit-Error-Rate (BER) is also reported.展开更多
A novel frequency estimation algorithm for wideband signal with sub-Nyquist sampling is proposed in this paper. With the aid of information provided by the auxiliary delayed sampling channel and the aliased frequency ...A novel frequency estimation algorithm for wideband signal with sub-Nyquist sampling is proposed in this paper. With the aid of information provided by the auxiliary delayed sampling channel and the aliased frequency estimation for wideband signal with sub-Nyquist sampling, the frequency aliasing due to sub-Nyquist sampling can be solved. This method can reduce the complexity of the overall hardware at the cost of an auxiliary sampling channel. Furthermore, in order to alleviate the computation burden for its practicability, a more simplified algorithm is put forward and its validity is proved by our numerical simulation results. The Cramer-Rao Lower Bound (CRLB) of the frequency estimation is also derived at the end of this paper.展开更多
With the evolution of Global Navigation Satellite System(GNSS),new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques,which jointly modulate multiple signals located on multiple...With the evolution of Global Navigation Satellite System(GNSS),new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques,which jointly modulate multiple signals located on multiple sub-frequencies into a Wideband Multiplexed Signal(WMS).Although WMSs were proposed initially to reduce the complexity of satellite transmitters and improve the transmission efficiency of signals,their multi-component structures and wide root mean square bandwidths introduced by high-frequency subcarriers also provide the possibility to improve the GNSS ranging precision.Therefore,this paper proposes a Dual-assisted Multi-component Tracking(DMT)technique,which can not only fully use high-frequency subcarriers in WMSs,but also effectively track carrier,subcarrier,and code by jointly utilizing all components in WMS.In this paper,the tracking and ranging performances of DMT are comprehensively analyzed theoretically and by simulation and real experiments.The results show that compared with existing WMS tracking methods,DMT can achieve tracking results with lower tracking jitters and ranging results with higher precision,providing a highly advantageous solution for new generation GNSS signal processing.展开更多
基金supported by the National Natural Science Foundation of China(61501176)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2016017)
文摘The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem, a novel method for wideband signals by sparse recovery in the frequency domain is proposed. The optimization functions are found and solved by the received data at every frequency, on this basis, the sparse support set is obtained, then the direction of arrival (DOA) is acquired by integrating the information of all frequency bins, and the initial signal can also be recovered. This method avoids the error caused by sparse recovery methods based on grid division, and the degree of freedom is also expanded by array transformation, especially it has a preferable performance under the circumstances of a small number of snapshots and a low signal to noise ratio (SNR).
基金This work was supported by the National Natural Science Foundation of China under Grant 61501176Natural Science Foundation of Heilongjiang Province F2018025+1 种基金University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province UNPYSCT-2016017the postdoctoral scientific research developmental fund of Heilongjiang Province in 2017 LBH-Q17149.
文摘In array signal processing,number of signals is often a premise of estimating other parameters.For the sake of determining signal number in the condition of strong additive noise or a little sample data,an algorithm for detecting number of wideband signals is provided.First,technique of focusing is used for transforming signals into a same focusing subspace.Then the support vector machine(SVM)can be deduced by the information of eigenvalues and corresponding eigenvectors.At last,the signal number can be determined with the obtained decision function.Several simulations have been carried on verifying the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6150117661201399)+1 种基金the Education Department of Heilongjiang Province Science and Technology Research Projects(12541638)the Developing Key Laboratory of Sensing Technology and Systems in Cold Region of Heilongjiang Province and Ministry of Education,(Heilongjiang University),P.R.China(P201408)
文摘For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low.
基金supported by the National Natural Science Foundation of China(No.61571146)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.
基金partially supported by the National Natural Science Foundation of China(Nos.61571292and 61535006)
文摘This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked laser, and the sampling rate is multiplied via a time-wavelength interleaving scheme. According to the laboratory test, an X-band linear frequency modulation signal is detected and digitized by the PADC system. The channel mismatch effect in wideband signal detection is compensated via an algorithm based on a short-time Fourier transform. Consequently, the signal-to-distortion ratio (SDR) of the wideband signal detection is enhanced to the comparable SDR of the single-tone signal detection.
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
基金Sponsored by National Nature Science Foundation of China(10474079)
文摘According to the features of the wideband underwater acoustic signals,an algorithm for the wideband ambiguity function is put forward based on Mellin transform.The wideband acoustic signal processing using the fast Mellin transform is also explored.The theoretical analysis and simulation results show that the algorithm has not only high computation efficiency but also good concentration in wideband ambiguity domain.It suits for the wideband underwater acoustic signal processing.
文摘This paper analyzes mathematically the crucial aspects of signal processing in a Multi-Band (MB) Orthogonal Frequency Division Multiplexing (OFDM) based system considering Ultra-Wideband (UWB) channel environment. In the process of analysis, it emphasizes the significant features of UWB receiver design in comparison with ‘conventional’ narrow-band system. The analysis shows that the high dispersive nature of a frequency selective UWB channel effects the design of different signal processing blocks like pre-select filter, low noise amplifier (LNA) and analog-to-digital (A/D) converter in the receiver front end. The characteristic functions of each of these stages are now dominated by the channel characteristics and it needs to be modified accordingly. This analysis is extended further with the study of frequency offset error and its correction. The unbiased Cramer Rao Lower Bound (CRLB) of estimation error is calculated and supported by computer simulation. The performance of an MB-OFDM system with frequency offset correction in terms of Bit-Error-Rate (BER) is also reported.
文摘A novel frequency estimation algorithm for wideband signal with sub-Nyquist sampling is proposed in this paper. With the aid of information provided by the auxiliary delayed sampling channel and the aliased frequency estimation for wideband signal with sub-Nyquist sampling, the frequency aliasing due to sub-Nyquist sampling can be solved. This method can reduce the complexity of the overall hardware at the cost of an auxiliary sampling channel. Furthermore, in order to alleviate the computation burden for its practicability, a more simplified algorithm is put forward and its validity is proved by our numerical simulation results. The Cramer-Rao Lower Bound (CRLB) of the frequency estimation is also derived at the end of this paper.
基金supported by National Natural Science Foundation of China,under Grant No.42274018National Key Research and Development Program of China under Grant No.2021YFA0716600.
文摘With the evolution of Global Navigation Satellite System(GNSS),new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques,which jointly modulate multiple signals located on multiple sub-frequencies into a Wideband Multiplexed Signal(WMS).Although WMSs were proposed initially to reduce the complexity of satellite transmitters and improve the transmission efficiency of signals,their multi-component structures and wide root mean square bandwidths introduced by high-frequency subcarriers also provide the possibility to improve the GNSS ranging precision.Therefore,this paper proposes a Dual-assisted Multi-component Tracking(DMT)technique,which can not only fully use high-frequency subcarriers in WMSs,but also effectively track carrier,subcarrier,and code by jointly utilizing all components in WMS.In this paper,the tracking and ranging performances of DMT are comprehensively analyzed theoretically and by simulation and real experiments.The results show that compared with existing WMS tracking methods,DMT can achieve tracking results with lower tracking jitters and ranging results with higher precision,providing a highly advantageous solution for new generation GNSS signal processing.