The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite el...The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.展开更多
By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the ...By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the base course of cement-stabilized gravel. Moreover, with the differential settlement at the bottom of the pavement structure as the constraint condition, a plane finite element model is established, which is used to study the stress variation of different pavement layers in response to the differential settlement of varying magnitudes. It shows that, under the effects of the ground differential settlement, the wearing course is subjected to the tensile stress while the base course to the compressive stress and the maximum additional tensile stress and compressive stress occur in the area of 1 m from the splicing joint between the new and the old subgrade. Plastic deformation develops in both layers when the ground differential settlement reaches 14 cm. When the differential settlement at the bottom of the pavement goes up to 1 cm, the maximum additional stress in the surface of the base course will reach 0. 28 MPa, which surpasses 0.276 MPa that is specified in the current specifications as the maximum splitting tensile strength for cement-stabilized base material.展开更多
A two-dimensional(2-D) finite element(FE) model was developed to analyze the deformation and stress of embankment on soft ground due to widening with different treatment techniques.It is found that the embankment wide...A two-dimensional(2-D) finite element(FE) model was developed to analyze the deformation and stress of embankment on soft ground due to widening with different treatment techniques.It is found that the embankment widening induces transverse gradient change due to differential settlements and horizontal outward movements at the shoulder of the existing embankment.Embankment widening also increases the shear stress along the slope of the existing embankment,especially at the foot of slope.The failure potential due to embankment widening may increase with the increase of widening width when the widening width is smaller than 8.5 m,but may decrease with the increase of widening width as the widening width is greater than 8.5 m.The effectiveness of four ground and embankment treatment techniques,including geosynthetic reinforcement,light-weight embankment,deep mixed columns,and separating wall were compared.The results indicate that these treatments reduce the differential settlements and improve the stability.The light-weight embankment has the most effectiveness among four treatments.By using the fly-ash backfill material in widening,the transverse gradient change decreases from 0.5%-1.3% to 0.26%-0.8% and the maximum horizontal displacement decreases from 2.76 cm to 1.44 cm.展开更多
The settlement of widened highway subgrade in mountainous area is not only affected by the interaction between new and existing subgrade, but also seriously restricted by the external retaining wall. Based on the prac...The settlement of widened highway subgrade in mountainous area is not only affected by the interaction between new and existing subgrade, but also seriously restricted by the external retaining wall. Based on the practical engineering of half-filled and half-cut widened mountainous highway subgrade with external balance weight retaining wall(BWRW), a sophisticated finite element numerical model is established. The evolution law of subgrade settlement is revealed during the whole process of new subgrade filling and BWRW inclination after construction. The settlement component of subgrade is clarified considering whether the existing pavement continues to be used. The results show that the additional settlement caused by the BWRW inclination after construction cannot be ignored in the widening and reconstruction of mountainous highway subgrade. In addition, pursuant to the comprehensive design of subgrade and pavement, the component of subgrade settlement should be determined according to whether the existing pavement continues to be used, while considering the influence of BWRW inclination after construction. When the existing pavement continues to be used, the settlement of the existing subgrade is caused by the new subgrade filling and the BWRW inclination after construction. On the contrary, the settlement is only caused by the BWRW inclination after construction.展开更多
The study mainly discusses the issues of the settlement of differences that occurs in the process of highway subgrade widening. Firstly, it briefly introduces the settlement of difference and its harms;then it analyze...The study mainly discusses the issues of the settlement of differences that occurs in the process of highway subgrade widening. Firstly, it briefly introduces the settlement of difference and its harms;then it analyzes the mechanism of settlement of differences in the process of difference widening, including four aspects: the new and old roadbeds themselves, design, construction and other links;finally, based on the above analysis of the mechanism, it discusses the corresponding control measures, mainly proposing these suggestions as followings: the use of lightweight materials, the foundation treatment, the cut slope excavation steps, and the strict control of the degree of compaction, etc. The paper is expected to provide some theoretical basis for the control measures of highway subgrade widening settlement of difference.展开更多
基金Project(200231800032) supported by Research on Transportation Construction in Western, China
文摘The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.
基金The National Natural Science Foundation of China(No.51008032)the China Postdoctoral Science Foundation(No.2011M501430)the Foundation of Central Universities of Ministry of Education(No.CHD2012JC011,CHD2011JC083)
文摘By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the base course of cement-stabilized gravel. Moreover, with the differential settlement at the bottom of the pavement structure as the constraint condition, a plane finite element model is established, which is used to study the stress variation of different pavement layers in response to the differential settlement of varying magnitudes. It shows that, under the effects of the ground differential settlement, the wearing course is subjected to the tensile stress while the base course to the compressive stress and the maximum additional tensile stress and compressive stress occur in the area of 1 m from the splicing joint between the new and the old subgrade. Plastic deformation develops in both layers when the ground differential settlement reaches 14 cm. When the differential settlement at the bottom of the pavement goes up to 1 cm, the maximum additional stress in the surface of the base course will reach 0. 28 MPa, which surpasses 0.276 MPa that is specified in the current specifications as the maximum splitting tensile strength for cement-stabilized base material.
文摘A two-dimensional(2-D) finite element(FE) model was developed to analyze the deformation and stress of embankment on soft ground due to widening with different treatment techniques.It is found that the embankment widening induces transverse gradient change due to differential settlements and horizontal outward movements at the shoulder of the existing embankment.Embankment widening also increases the shear stress along the slope of the existing embankment,especially at the foot of slope.The failure potential due to embankment widening may increase with the increase of widening width when the widening width is smaller than 8.5 m,but may decrease with the increase of widening width as the widening width is greater than 8.5 m.The effectiveness of four ground and embankment treatment techniques,including geosynthetic reinforcement,light-weight embankment,deep mixed columns,and separating wall were compared.The results indicate that these treatments reduce the differential settlements and improve the stability.The light-weight embankment has the most effectiveness among four treatments.By using the fly-ash backfill material in widening,the transverse gradient change decreases from 0.5%-1.3% to 0.26%-0.8% and the maximum horizontal displacement decreases from 2.76 cm to 1.44 cm.
基金supported by Sichuan Science and Technology Program (No.2019YFS0492)Key Laboratories Open Engineering Practice Program to Undergraduates of SWJTU (No.ZD2020010010)。
文摘The settlement of widened highway subgrade in mountainous area is not only affected by the interaction between new and existing subgrade, but also seriously restricted by the external retaining wall. Based on the practical engineering of half-filled and half-cut widened mountainous highway subgrade with external balance weight retaining wall(BWRW), a sophisticated finite element numerical model is established. The evolution law of subgrade settlement is revealed during the whole process of new subgrade filling and BWRW inclination after construction. The settlement component of subgrade is clarified considering whether the existing pavement continues to be used. The results show that the additional settlement caused by the BWRW inclination after construction cannot be ignored in the widening and reconstruction of mountainous highway subgrade. In addition, pursuant to the comprehensive design of subgrade and pavement, the component of subgrade settlement should be determined according to whether the existing pavement continues to be used, while considering the influence of BWRW inclination after construction. When the existing pavement continues to be used, the settlement of the existing subgrade is caused by the new subgrade filling and the BWRW inclination after construction. On the contrary, the settlement is only caused by the BWRW inclination after construction.
文摘The study mainly discusses the issues of the settlement of differences that occurs in the process of highway subgrade widening. Firstly, it briefly introduces the settlement of difference and its harms;then it analyzes the mechanism of settlement of differences in the process of difference widening, including four aspects: the new and old roadbeds themselves, design, construction and other links;finally, based on the above analysis of the mechanism, it discusses the corresponding control measures, mainly proposing these suggestions as followings: the use of lightweight materials, the foundation treatment, the cut slope excavation steps, and the strict control of the degree of compaction, etc. The paper is expected to provide some theoretical basis for the control measures of highway subgrade widening settlement of difference.