As one of the widely used upgrading way in road engineering, the widening embankment(WE) has suffered evident differential deformation, which is even severer for highway in permafrost regions due to the temperature se...As one of the widely used upgrading way in road engineering, the widening embankment(WE) has suffered evident differential deformation, which is even severer for highway in permafrost regions due to the temperature sensitivity of frozen soil and the heat absorption effect of the asphalt pavement. Given this issue, a full-scale experimental highway of WE was performed along the Qinghai-Tibet Highway(QTH) to investigate the differential deformation features and its developing law. The continuous three years' monitoring data taken from the experimental site, including the ground temperature and the layered deformation of WE and original embankment(OE), were used to analyze the thermal-deformation process. The results indicate that the widening part presented the remarkable thermal disturbance to the existing embankment(EE). The underlying permafrost was in a noteworthy degradation state, embodying the apparent decrease of the permafrost table and the increase of the ground temperature. Correspondingly, the heat disruption induced by widening led to a much higher deformation at the widening side compared to the original embankment, showing a periodic stepwise curve. Specifically, the deformation mainly occurred in the junction of the EE and the widening part, most of which was caused by the thawing consolidation near the original permafrost table. In contrast, the deformation of EE mainly attributed to the compression of the active layer. Furthermore, it was the deformation origination differences that resulted in the differential deformation of WE developed gradually during the monitoring period, the maximum of which reached up to 64 mm.展开更多
文摘As one of the widely used upgrading way in road engineering, the widening embankment(WE) has suffered evident differential deformation, which is even severer for highway in permafrost regions due to the temperature sensitivity of frozen soil and the heat absorption effect of the asphalt pavement. Given this issue, a full-scale experimental highway of WE was performed along the Qinghai-Tibet Highway(QTH) to investigate the differential deformation features and its developing law. The continuous three years' monitoring data taken from the experimental site, including the ground temperature and the layered deformation of WE and original embankment(OE), were used to analyze the thermal-deformation process. The results indicate that the widening part presented the remarkable thermal disturbance to the existing embankment(EE). The underlying permafrost was in a noteworthy degradation state, embodying the apparent decrease of the permafrost table and the increase of the ground temperature. Correspondingly, the heat disruption induced by widening led to a much higher deformation at the widening side compared to the original embankment, showing a periodic stepwise curve. Specifically, the deformation mainly occurred in the junction of the EE and the widening part, most of which was caused by the thawing consolidation near the original permafrost table. In contrast, the deformation of EE mainly attributed to the compression of the active layer. Furthermore, it was the deformation origination differences that resulted in the differential deformation of WE developed gradually during the monitoring period, the maximum of which reached up to 64 mm.