Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showe...Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.展开更多
Droplets generation in Y-junctions and anti-Yjunctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation.Geometric configuration of a microchannel,such as ...Droplets generation in Y-junctions and anti-Yjunctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation.Geometric configuration of a microchannel,such as Y-angle(90°,135°,-90° and-135°),channel depth and other factors have been taken into consideration.It is found that droplets generated in anti-Y-junctions have a smaller size and a shorter generation cycle compared with those in Yjunctions under the same experimental conditions.Through observing the internal velocity field,the vortex appearing in continuous phase in anti-Y-junctions is one of the key factors for the difference of droplet size and generation cycle.It is found that droplet size is bigger and generation cycle is longer when the absolute angle value of the intersection between the continuous and the dispersed phases(i.e.,the angle between the main channel and the continuous phase or the dispersed phase channel) increases.The droplet's size is influenced by the Y-angle,which varies with the channel depth in Y-junctions.The Y-angle has a positive effect on the droplet generation cycle,but a smaller height-width ratio will enhance the impact of a continuous and dispersed phase's intersection angle on the droplet generation cycle in Y-junctions microchannels.展开更多
基金sponsored by Coal and Energy Research Bureau and CDC-NIOSH under Grant No.R01OH009532
文摘Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.
基金supported by the National Natural Science Foundation of China(Grants 11072011 and 11002007)
文摘Droplets generation in Y-junctions and anti-Yjunctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation.Geometric configuration of a microchannel,such as Y-angle(90°,135°,-90° and-135°),channel depth and other factors have been taken into consideration.It is found that droplets generated in anti-Y-junctions have a smaller size and a shorter generation cycle compared with those in Yjunctions under the same experimental conditions.Through observing the internal velocity field,the vortex appearing in continuous phase in anti-Y-junctions is one of the key factors for the difference of droplet size and generation cycle.It is found that droplet size is bigger and generation cycle is longer when the absolute angle value of the intersection between the continuous and the dispersed phases(i.e.,the angle between the main channel and the continuous phase or the dispersed phase channel) increases.The droplet's size is influenced by the Y-angle,which varies with the channel depth in Y-junctions.The Y-angle has a positive effect on the droplet generation cycle,but a smaller height-width ratio will enhance the impact of a continuous and dispersed phase's intersection angle on the droplet generation cycle in Y-junctions microchannels.