The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-prod...The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.展开更多
为探讨不同品种金鱼的系统进化关系,利用PCR技术扩增了金鱼的7个代表品种红龙睛(Red dragon goldfish)、红帽子(Red cap goldfish)、虎头(Tiger head goldfish)、琉金(Gold plating goldfish)、墨龙睛(Black dragon goldfish...为探讨不同品种金鱼的系统进化关系,利用PCR技术扩增了金鱼的7个代表品种红龙睛(Red dragon goldfish)、红帽子(Red cap goldfish)、虎头(Tiger head goldfish)、琉金(Gold plating goldfish)、墨龙睛(Black dragon goldfish)、水泡眼(Water vesicle goldfish)、珍珠(Genuine pearl goldfish)的线粒体DNA上细胞色素b的部分核苷酸序列,长度为597bp。结合GenBank中红鲫、野鲫、日本白鲫、银鲫、鲤鱼的序列进行比较分析,结果显示,这7个金鱼品种之间的同源性都很高,在99.5%-100%之间;7种金鱼和红鲫的同源性也很高,为99.5%~99.8%,与野鲫的同源性在96.8%~97.2%,与日本白鲫、银鲫的同源性为93.1%~94.3%,与鲤鱼的同源性相对较低,为88.3%-88.6%。利用DNAstar软件构建了不同品种金鱼和鲫鱼的分子系统树,从分子水平进一步证实了金鱼起源于野鲫。展开更多
文摘The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.
文摘为探讨不同品种金鱼的系统进化关系,利用PCR技术扩增了金鱼的7个代表品种红龙睛(Red dragon goldfish)、红帽子(Red cap goldfish)、虎头(Tiger head goldfish)、琉金(Gold plating goldfish)、墨龙睛(Black dragon goldfish)、水泡眼(Water vesicle goldfish)、珍珠(Genuine pearl goldfish)的线粒体DNA上细胞色素b的部分核苷酸序列,长度为597bp。结合GenBank中红鲫、野鲫、日本白鲫、银鲫、鲤鱼的序列进行比较分析,结果显示,这7个金鱼品种之间的同源性都很高,在99.5%-100%之间;7种金鱼和红鲫的同源性也很高,为99.5%~99.8%,与野鲫的同源性在96.8%~97.2%,与日本白鲫、银鲫的同源性为93.1%~94.3%,与鲤鱼的同源性相对较低,为88.3%-88.6%。利用DNAstar软件构建了不同品种金鱼和鲫鱼的分子系统树,从分子水平进一步证实了金鱼起源于野鲫。