为实现风电出力时间序列的高性能模拟,文中提出了一种基于SAGA-KM(simulated annealing and genetic algorithms-K-means)算法实现典型风电场景分类和基于Copula函数进行风电日过程马尔可夫过程建模的风电模拟方法。SAGA-KM算法将传统K...为实现风电出力时间序列的高性能模拟,文中提出了一种基于SAGA-KM(simulated annealing and genetic algorithms-K-means)算法实现典型风电场景分类和基于Copula函数进行风电日过程马尔可夫过程建模的风电模拟方法。SAGA-KM算法将传统KM算法与遗传算法和退火算法相结合,能显著提高风电场景分类效果;基于Copula函数建立的马尔可夫链精细概率模型,以去粗粒化方式实现马尔可夫过程蒙特卡洛模拟,克服了粗粒化引起的概率分布偏差。针对甘肃省某风电场数据进行实际模拟,结果表明文中方法生成模拟序列的统计分布特性、自相关函数特性和日均功率的分布特性与实测数据都非常接近,该方法能很好地保留风电序列的概率分布特性和随时间变化的波动特性,具有重要的工程实用价值。展开更多
Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted pow...Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted power supply. The proposed converter uses four winding transformer with two primary windings and two secondary windings. The grid supply is connected to the first winding of transformer through rectifier-inverter for controlled power transfer. The solar energy is inverted and applied to the second winding of primary. Two output ports are considered. The circuit is designed to get zero current switching during turn-off and zero voltage switching during turn-on to alleviate the switching losses. The simulation results for the proposed configuration are presented in this paper.展开更多
文摘为实现风电出力时间序列的高性能模拟,文中提出了一种基于SAGA-KM(simulated annealing and genetic algorithms-K-means)算法实现典型风电场景分类和基于Copula函数进行风电日过程马尔可夫过程建模的风电模拟方法。SAGA-KM算法将传统KM算法与遗传算法和退火算法相结合,能显著提高风电场景分类效果;基于Copula函数建立的马尔可夫链精细概率模型,以去粗粒化方式实现马尔可夫过程蒙特卡洛模拟,克服了粗粒化引起的概率分布偏差。针对甘肃省某风电场数据进行实际模拟,结果表明文中方法生成模拟序列的统计分布特性、自相关函数特性和日均功率的分布特性与实测数据都非常接近,该方法能很好地保留风电序列的概率分布特性和随时间变化的波动特性,具有重要的工程实用价值。
文摘Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted power supply. The proposed converter uses four winding transformer with two primary windings and two secondary windings. The grid supply is connected to the first winding of transformer through rectifier-inverter for controlled power transfer. The solar energy is inverted and applied to the second winding of primary. Two output ports are considered. The circuit is designed to get zero current switching during turn-off and zero voltage switching during turn-on to alleviate the switching losses. The simulation results for the proposed configuration are presented in this paper.