The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
In order to investigate the wind characteristics of coastal areas of China, a long-term field measurement of natural wind was carried out. Based on the field measurement results, this paper presents the natural wind c...In order to investigate the wind characteristics of coastal areas of China, a long-term field measurement of natural wind was carried out. Based on the field measurement results, this paper presents the natural wind characteristics of typhoons and strong monsoons at the site of Xi-hou-men Bridge, including mean wind speed, mean wind direction, mean wind elevation angle, turbulent intensity, gust factor, turbulence integral length scales, power spectrum of wind speed and spatial correlation of gusty wind, the profiles of mean wind speed and turbulent intensity, etc. The correlation among wind characteristics is analyzed in detail, and the similarities and differences of wind characteristics between typhoons and monsoons are analyzed. These results can pro- vide detailed wind characteristics of coastal areas of China.展开更多
The Sutong Bridge, a cable-stayed located in the southeast coastal area of China, is vulnerable to the Pacific typhoons. From the data measured by two 3D ultrasonic anemometers at the height of 76 m and 306 m, the win...The Sutong Bridge, a cable-stayed located in the southeast coastal area of China, is vulnerable to the Pacific typhoons. From the data measured by two 3D ultrasonic anemometers at the height of 76 m and 306 m, the wind characteristics (including 10-minute mean wind speed and direction, turbulence intensity and gust factor, power spectral density and integral scale of turbulence) of Typhoon Kalmaegi are analyzed The comparison of 10-minute mean wind velocity from the two anemometers vali- dates the reliability of wind data. The turbulence intensities (Iu, Iv, and Iw) show the decreasing trend as the mean wind speed increases. The mean value of Iv/Iu is 0.94, while that of Iw/Iu is 0.90. Discrepancy exists between field-measured power spectra and code-suggested spectra. Those results can enlarge the wind database of the southeast coastal area of China, and provide references for wind resistance evaluation of the bridge.展开更多
As a cable-stayed bridge with the longest main span, the Sutong Bridge faces the threat of typhoons every year. Based on field measured data measured at the top of the tower and at the mid-span by anemometers, Typhoon...As a cable-stayed bridge with the longest main span, the Sutong Bridge faces the threat of typhoons every year. Based on field measured data measured at the top of the tower and at the mid-span by anemometers, Typhoon Muifa is analyzed in detail to obtain the wind characteristics, including the mean wind speed and direction, turbulence intensity and gust factor, power spectral density and integral scale of turbulence, etc. The correlated mean wind speeds at the two heights show the reliability of recorded wind data as well as the variation of wind speed with height. Turbulence inten- sities and gust factors fluctuate in a similar way. The values of inte- gral scales are sensitive in different case. The measured power spec- tra are particularly compared with Kaimal spectrum, Teunissen spectrum, Harris spectrum, and Davenport spectrum. The results show that the measured spectra cannot fit the code-suggested spectra very well, which exhibits the demand of more accurate spectra. Conclusions obtained in this article can provide references for wind resistance desima of suoer-long-soan cable-staved brides.展开更多
The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stati...The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
The wind environment of a site is one of the important factors affecting the observation performance of large aperture and high-performance radio telescopes.Exploring the relationship between the effects of different ...The wind environment of a site is one of the important factors affecting the observation performance of large aperture and high-performance radio telescopes.Exploring the relationship between the effects of different terrains on wind flow is important to optimize the wind environment of the site.The terrain of the Qitai radio telescope(QTT)site located in east Tianshan Mountains at an elevation of about 1800 m was used to study the wind flow in the adjacent zone of antenna based on numerical simulation.The area from 600m south to 600m north of the antenna is defined as the antenna adjacent zone,and three groups of boundaries with different terrains are set up upstream and downstream,respectively.Since the zone where the antenna is located is a slope terrain,in order to verify the influence of terrain on the wind flow and to clarify the relationship between the influence of boundary terrain on the wind flow,a control group of horizontal terrain is constructed.The simulation results show that the wind flow is mainly influenced by the terrain.The highest elevation of the upstream and downstream boundary terrains affects the basic wind speed.The upstream boundary terrain has a greater impact on wind flow than the downstream boundary terrain.In addition,the wind speed profile index obtained by numerical simulation is smaller than the actual index for the wind from south.Therefore,the wind speed at the upper level(about 100 m)obtained by inversion based on the measured wind speed at the bottom(about 10 m)is also smaller than the actual wind speed.展开更多
The increasing use of fossil fuels has a significant impact on the environment and ecosystem,which increases the rate of pollution.Given the high potential of renewable energy sources inYemen and the absence of simila...The increasing use of fossil fuels has a significant impact on the environment and ecosystem,which increases the rate of pollution.Given the high potential of renewable energy sources inYemen and the absence of similar studies in the region,this study aims to examine the potential of wind energy in Socotra Island.This was done by analyzing and evaluating wind properties,determining available energy density,calculating wind energy extracted at different altitudes,and then computing the capacity factor for a number of wind turbines and determining the best.The average wind speed in Socotra Island was obtained from the Civil Aviation and Meteorology Authority data,only for the five-year data currently available.The results showed high wind speeds from June to September(9.85-14.88 m/s)while the wind speed decreased for the rest of the year.The average wind speed in the five years was 7.95 m/s.The average annual wind speed,wind energy density,and annual energy density were calculated at different altitudes(10,30,and 50 m).According to the International Wind Energy Rating criteria,the region of Socotra Island falls under Category 7 and is classified as‘Superb’for most of the year.This study provides useful information for developing wind energy and an efficient wind approach.展开更多
The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line betwe...The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when ex- posed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudi- nal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerody- namic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (mo- ments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analyticalmethod produces over-conservative limits. The methodol- ogy proposed in the present paper can provide more signif- icant reference for the safety operation of high-speed trains exposed to stochastic winds.展开更多
The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typic...The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.展开更多
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met...In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.展开更多
We investigated the effect of structural factor and amide grafted multi-walled carbon nanotubes(MWNTs-NH2) on crushing characteristics of filament wound CFRP tube under quasi-static compression conditon. It was foun...We investigated the effect of structural factor and amide grafted multi-walled carbon nanotubes(MWNTs-NH2) on crushing characteristics of filament wound CFRP tube under quasi-static compression conditon. It was found that CFRP tubes sequentially showed the brittle fracturing mode, the local buckling fracturing mode and transverse shearing fracturing mode with increasing winding angle, respectively, with the characterizations by mechanical testing, SEM and optical microscopy. Moreover, crack propagation initiated by pre-crack and subsequent failure in the tube were strongly dependent on pre-crack angle due to defl ection and penetration competition of crack evolution. The simulated compression failure behavior correlated well with the experimental results, revealing that the Chang-Chang failure criterion was effective in representing the quasistatic crushing characteristics of the tube. In addtion, the MWNTs-NH2 were sucessfully obtained by multistep functionization. The compressvie properties of the tubes were signifi cantly improved by the addition of the MWNTs-NH2 due to their uniform dispersion and high interfacial chemical reactivity, whereas the as-received MWNTs and other functionalized MWNTs were not as effective.展开更多
Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the c...Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills.展开更多
Field measurement of strong wind characteristics is of great significance for the development of bridge wind engineering. Located in east China, the Runyang Suspension Bridge (RSB) with a main span of 1490 m is the lo...Field measurement of strong wind characteristics is of great significance for the development of bridge wind engineering. Located in east China, the Runyang Suspension Bridge (RSB) with a main span of 1490 m is the longest bridge in China and the third longest in the world. During the last four years, the RSB has suffered from typhoons and strong northern winds on more than ten occasions. To determine the strong wind characteristics of the RSB, wind measurement data obtained from field tests during strong winds and data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS) of the RSB were combined to analyze the wind speed and direction, variation in wind speed with height, turbulence intensity, turbulence integral length, wind friction speed and the power spectrum. Comparative studies on the characteristics of these different strong winds were carried out based on the current wind-resistant design specification for highway bridges. Results showed that some regularity in wind characteristics can be found in these different typhoons passing through the RSB. The difference between a strong northern wind and a typhoon is relatively clear, and in summer the typhoon is the dominant wind load acting on the RSB. In addition, there were some differences between the measured strong wind characteristics and the values suggested by the specification, especially in respect to turbulence intensity and turbulence integral length. Results provide measurement data for establishing a strong wind characteristic database for the RSB and for determining the strong wind characteristic parameter values of this coastal area in east China.展开更多
A statistical study of GMS low cloud winds in January,April,July and October,1983 shows that on an average,there exist 223.5 low cloud winds over western North Pacific each synoptic time.The low cloud winds have a diu...A statistical study of GMS low cloud winds in January,April,July and October,1983 shows that on an average,there exist 223.5 low cloud winds over western North Pacific each synoptic time.The low cloud winds have a diurnal change with more low cloud winds at 12 Z than at 00 Z. The wind fields at 850 hPa over western North Pacific,with and without application of low cloud winds, have been analyzed by a successive correction scheme.The results indicate that the flow patterns without low cloud winds are considerably distorted from short of wind data over the oceanic region.On the con- trary,with application of low cloud winds,the flow patterns get much more improved over the oceanic region.展开更多
To coordinate the protection of PMSG(permanent magnet synchronous generator),collector circuits and outgoing lines,a comprehensive and improved protection method of PMSG based wind farms with LVRT(low voltage ride thr...To coordinate the protection of PMSG(permanent magnet synchronous generator),collector circuits and outgoing lines,a comprehensive and improved protection method of PMSG based wind farms with LVRT(low voltage ride through)capability is proposed.The proposed method includes adding a short time delay to the collector network current protection zone I and a directional protective relaying to the collector network protection,installing grounding transformers and zero sequence current protection,and generator low-voltage protection action improvement.A LVRT scheme consisting of variable resistance dumping circuit,grid side dynamic reactive power control and reactive power compensation control is proposed.The fault characteristics of PMSG based wind farms are analyzed,and a PMSG based wind farm in Dabancheng,Xinjiang,is used as an example to analyze typical wind farm protection configuration,the setting values considering LVRT requirements,and the coordination problems.Finally,an improved wind farm protection coordination methodology is proposed and its validity is verified by simulation.展开更多
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
基金Project supported by the National Natural Science Foundation of China (No. 50808148)the National Key Technology R&D Program (No. 2008BAG07B02), China
文摘In order to investigate the wind characteristics of coastal areas of China, a long-term field measurement of natural wind was carried out. Based on the field measurement results, this paper presents the natural wind characteristics of typhoons and strong monsoons at the site of Xi-hou-men Bridge, including mean wind speed, mean wind direction, mean wind elevation angle, turbulent intensity, gust factor, turbulence integral length scales, power spectrum of wind speed and spatial correlation of gusty wind, the profiles of mean wind speed and turbulent intensity, etc. The correlation among wind characteristics is analyzed in detail, and the similarities and differences of wind characteristics between typhoons and monsoons are analyzed. These results can pro- vide detailed wind characteristics of coastal areas of China.
基金Supported by the Key Project of the National Natural Science Foundation of China (0538020)the National Natural Science Foundation of China for Distinguished Young Scientists (50725828)+1 种基金the National Natural Science Foundation of China (50908046)the Specialized Research Fund for the Doctoral Program of Higher Education (200802861012)
文摘The Sutong Bridge, a cable-stayed located in the southeast coastal area of China, is vulnerable to the Pacific typhoons. From the data measured by two 3D ultrasonic anemometers at the height of 76 m and 306 m, the wind characteristics (including 10-minute mean wind speed and direction, turbulence intensity and gust factor, power spectral density and integral scale of turbulence) of Typhoon Kalmaegi are analyzed The comparison of 10-minute mean wind velocity from the two anemometers vali- dates the reliability of wind data. The turbulence intensities (Iu, Iv, and Iw) show the decreasing trend as the mean wind speed increases. The mean value of Iv/Iu is 0.94, while that of Iw/Iu is 0.90. Discrepancy exists between field-measured power spectra and code-suggested spectra. Those results can enlarge the wind database of the southeast coastal area of China, and provide references for wind resistance evaluation of the bridge.
基金Supported by the National Natural Science Foundation of China(50908046,50978056)the Teaching and Scientific Research Fund for Excellent Young Teachers of Southeast University(3205001101)+1 种基金the Basic Scientific andResearch Fund of Southeast University(Seucx-201106)the Priority Academic Program Development Foundation of Jiangsu Higher Education Institutions,China
文摘As a cable-stayed bridge with the longest main span, the Sutong Bridge faces the threat of typhoons every year. Based on field measured data measured at the top of the tower and at the mid-span by anemometers, Typhoon Muifa is analyzed in detail to obtain the wind characteristics, including the mean wind speed and direction, turbulence intensity and gust factor, power spectral density and integral scale of turbulence, etc. The correlated mean wind speeds at the two heights show the reliability of recorded wind data as well as the variation of wind speed with height. Turbulence inten- sities and gust factors fluctuate in a similar way. The values of inte- gral scales are sensitive in different case. The measured power spec- tra are particularly compared with Kaimal spectrum, Teunissen spectrum, Harris spectrum, and Davenport spectrum. The results show that the measured spectra cannot fit the code-suggested spectra very well, which exhibits the demand of more accurate spectra. Conclusions obtained in this article can provide references for wind resistance desima of suoer-long-soan cable-staved brides.
基金supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052)。
文摘The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金supported by the National Natural Science Foundation of China(No.12103083)the Natural Science Foundation of Xinjiang Autonomous(No.2022D01E85)+4 种基金the Youth Innovation Promotion Association,CAS(No.Y202019)the National Natural Science Foundation of China 12273102)the National Key Research and Development Program of China(No.2021YFC2203601)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant no.PTYQ2022YZZD01)。
文摘The wind environment of a site is one of the important factors affecting the observation performance of large aperture and high-performance radio telescopes.Exploring the relationship between the effects of different terrains on wind flow is important to optimize the wind environment of the site.The terrain of the Qitai radio telescope(QTT)site located in east Tianshan Mountains at an elevation of about 1800 m was used to study the wind flow in the adjacent zone of antenna based on numerical simulation.The area from 600m south to 600m north of the antenna is defined as the antenna adjacent zone,and three groups of boundaries with different terrains are set up upstream and downstream,respectively.Since the zone where the antenna is located is a slope terrain,in order to verify the influence of terrain on the wind flow and to clarify the relationship between the influence of boundary terrain on the wind flow,a control group of horizontal terrain is constructed.The simulation results show that the wind flow is mainly influenced by the terrain.The highest elevation of the upstream and downstream boundary terrains affects the basic wind speed.The upstream boundary terrain has a greater impact on wind flow than the downstream boundary terrain.In addition,the wind speed profile index obtained by numerical simulation is smaller than the actual index for the wind from south.Therefore,the wind speed at the upper level(about 100 m)obtained by inversion based on the measured wind speed at the bottom(about 10 m)is also smaller than the actual wind speed.
基金The author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(R.G.P.2/25/42),Received by Fahd N.Al-Wesabi.www.kku.edu.sa.
文摘The increasing use of fossil fuels has a significant impact on the environment and ecosystem,which increases the rate of pollution.Given the high potential of renewable energy sources inYemen and the absence of similar studies in the region,this study aims to examine the potential of wind energy in Socotra Island.This was done by analyzing and evaluating wind properties,determining available energy density,calculating wind energy extracted at different altitudes,and then computing the capacity factor for a number of wind turbines and determining the best.The average wind speed in Socotra Island was obtained from the Civil Aviation and Meteorology Authority data,only for the five-year data currently available.The results showed high wind speeds from June to September(9.85-14.88 m/s)while the wind speed decreased for the rest of the year.The average wind speed in the five years was 7.95 m/s.The average annual wind speed,wind energy density,and annual energy density were calculated at different altitudes(10,30,and 50 m).According to the International Wind Energy Rating criteria,the region of Socotra Island falls under Category 7 and is classified as‘Superb’for most of the year.This study provides useful information for developing wind energy and an efficient wind approach.
基金supported by the 2013 Doctoral Innovation Funds of Southwest Jiaotong University and the Fundamental Research Funds for the Central Universitiesthe High-speed Railway Basic Research Fund Key Project of China(U1234208)the National Natural Science Foundation of China(50823004)
文摘The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when ex- posed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudi- nal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerody- namic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (mo- ments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analyticalmethod produces over-conservative limits. The methodol- ogy proposed in the present paper can provide more signif- icant reference for the safety operation of high-speed trains exposed to stochastic winds.
基金supported by the National Natural Science Foundation of China(Grant No.51705267)China Postdoctoral Science Foundation Grant(Grant No.2018M630750)+1 种基金National Natural Science Foundation of China(Grant No.51605397)Natural Science Foundation of Shandong Province,China(Grant No.ZR2014EEP002).
文摘The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.
基金supported by Science and Technology project of the State Grid Corporation of China“Research on Active Development Planning Technology and Comprehensive Benefit Analysis Method for Regional Smart Grid Comprehensive Demonstration Zone”National Natural Science Foundation of China(51607104)
文摘In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.
基金Funded by the National Natural Science Foundation of China(No.U1362205)the Natural Science Foundation of Jiangsu Province(No.SBK2014040489)+2 种基金the National High Technology Research and Development Program of China(No.2012AA03A203)the Beijing Youth Talent Plan(No.YETP0492)the 2014 Open Project of State Key Laboratory of OrganicInorganic Composites
文摘We investigated the effect of structural factor and amide grafted multi-walled carbon nanotubes(MWNTs-NH2) on crushing characteristics of filament wound CFRP tube under quasi-static compression conditon. It was found that CFRP tubes sequentially showed the brittle fracturing mode, the local buckling fracturing mode and transverse shearing fracturing mode with increasing winding angle, respectively, with the characterizations by mechanical testing, SEM and optical microscopy. Moreover, crack propagation initiated by pre-crack and subsequent failure in the tube were strongly dependent on pre-crack angle due to defl ection and penetration competition of crack evolution. The simulated compression failure behavior correlated well with the experimental results, revealing that the Chang-Chang failure criterion was effective in representing the quasistatic crushing characteristics of the tube. In addtion, the MWNTs-NH2 were sucessfully obtained by multistep functionization. The compressvie properties of the tubes were signifi cantly improved by the addition of the MWNTs-NH2 due to their uniform dispersion and high interfacial chemical reactivity, whereas the as-received MWNTs and other functionalized MWNTs were not as effective.
基金supported by the National Natural Science Foundation of China(Nos.51925808 and 52178516)the Natural Science Foundation of Hunan Province(Nos.2020JJ5745 and 2023JJ20073),China.
文摘Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills.
基金Project supported by the National Natural Science Foundation of China (Nos. 50725828, 50908046, and 50978056)the National Science & Technology Pillar Program (No. 2006BAJ03B05)the PhD Program Foundation of MOE (No. 200802861012), China
文摘Field measurement of strong wind characteristics is of great significance for the development of bridge wind engineering. Located in east China, the Runyang Suspension Bridge (RSB) with a main span of 1490 m is the longest bridge in China and the third longest in the world. During the last four years, the RSB has suffered from typhoons and strong northern winds on more than ten occasions. To determine the strong wind characteristics of the RSB, wind measurement data obtained from field tests during strong winds and data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS) of the RSB were combined to analyze the wind speed and direction, variation in wind speed with height, turbulence intensity, turbulence integral length, wind friction speed and the power spectrum. Comparative studies on the characteristics of these different strong winds were carried out based on the current wind-resistant design specification for highway bridges. Results showed that some regularity in wind characteristics can be found in these different typhoons passing through the RSB. The difference between a strong northern wind and a typhoon is relatively clear, and in summer the typhoon is the dominant wind load acting on the RSB. In addition, there were some differences between the measured strong wind characteristics and the values suggested by the specification, especially in respect to turbulence intensity and turbulence integral length. Results provide measurement data for establishing a strong wind characteristic database for the RSB and for determining the strong wind characteristic parameter values of this coastal area in east China.
基金supported by the National Natural Science Foundation of China
文摘A statistical study of GMS low cloud winds in January,April,July and October,1983 shows that on an average,there exist 223.5 low cloud winds over western North Pacific each synoptic time.The low cloud winds have a diurnal change with more low cloud winds at 12 Z than at 00 Z. The wind fields at 850 hPa over western North Pacific,with and without application of low cloud winds, have been analyzed by a successive correction scheme.The results indicate that the flow patterns without low cloud winds are considerably distorted from short of wind data over the oceanic region.On the con- trary,with application of low cloud winds,the flow patterns get much more improved over the oceanic region.
文摘To coordinate the protection of PMSG(permanent magnet synchronous generator),collector circuits and outgoing lines,a comprehensive and improved protection method of PMSG based wind farms with LVRT(low voltage ride through)capability is proposed.The proposed method includes adding a short time delay to the collector network current protection zone I and a directional protective relaying to the collector network protection,installing grounding transformers and zero sequence current protection,and generator low-voltage protection action improvement.A LVRT scheme consisting of variable resistance dumping circuit,grid side dynamic reactive power control and reactive power compensation control is proposed.The fault characteristics of PMSG based wind farms are analyzed,and a PMSG based wind farm in Dabancheng,Xinjiang,is used as an example to analyze typical wind farm protection configuration,the setting values considering LVRT requirements,and the coordination problems.Finally,an improved wind farm protection coordination methodology is proposed and its validity is verified by simulation.