This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combin...This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.展开更多
The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablesp...The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system.展开更多
A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled...A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.展开更多
In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The non...In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.展开更多
In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence i...In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.展开更多
A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DF...A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.展开更多
Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivale...Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.展开更多
In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power ...In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power extraction from the permanent magnet synchronous generator(PMSG).The bridgeless topology enables the elimination of the front-end diode bridge rectifier(DBR).Moreover,the converter has fewer components,simple control,and high efficiency,making it suitable for a small-scale WECS.A squirrel cage induction motor(SCIM)is used to emulate a MOD-2 wind turbine to implement the PMSG-based WECS.A direct-drive eight-pole PMSG is used in this study;thus,a low-input-voltage system is designed.The converter is designed to operate in the discontinuous inductor current mode(DICM)for inherent power factor correction(PFC)and the maximum power point tracking(MPPT)is achieved through the tip-speed ratio(TSR)following.The performance of the developed system is analyzed through simulation,and a 500 W hardware prototype is developed and tested in different wind speed conditions.展开更多
Wind energy has been identified as the second dominating source in the world renewable energy generation after hydropower.Conversion and distribution of wind energy has brought technology revolution by developing the ...Wind energy has been identified as the second dominating source in the world renewable energy generation after hydropower.Conversion and distribution of wind energy has brought technology revolution by developing the advanced wind energy conversion system(WECS)including multilevel inverters(MLIs).The conventional rectifier produces ripples in their output waveforms while the MLI suffers from voltage balancing issues across the DC-link capacitor.This paper proposes a simplified proportional integral(PI)-based space vector pulse width modulation(SVPWM)to minimize the output waveform ripples,resolve the voltage balancing issue and produce better-quality output waveforms.WECS experiences various types of faults particularly in the DC-link capacitor and switching devices of the power converter.These faults,if not detected and rectified at an early stage,may lead to catastrophic failures to the WECS and continuity of the power supply.This paper proposes a new algorithm embedded in the proposed PI-based SVPWM controller to identify the fault location in the power converter in real time.Since most wind power plants are located in remote areas or offshore,WECS condition monitoring needs to be developed over the internet of things(IoT)to ensure system reliability.In this paper,an industrial IoT algorithm with an associated hardware prototype is proposed to monitor the condition of WECS in the real-time environment.展开更多
We present the ferroresonance overvoltage mitigation concerning the power systems of the grid-connectcd wind energy conversion systems(WECSs).WECS is considered based on a doubly-fed induction generator(DFIG).Ferrores...We present the ferroresonance overvoltage mitigation concerning the power systems of the grid-connectcd wind energy conversion systems(WECSs).WECS is considered based on a doubly-fed induction generator(DFIG).Ferroresonance overvoltage associated with a single-pole outage of the line breaker is mitigated by fast regulating the reactive power using the static compensator(STATCOM).STATCOM controller is introduced,in which t>\o incorporated proportional-integral(PI)controllers are optimally tuned using a modified flow-er pollination algorithm(MFPA)as an optimization technique.To show the capability of the proposed STATCOM controller in mitigating the ferroresonance overvoltage,two test cases are introduced,which are based on the interconnection status of the power transformer used with the grid-connected DFIGs.The results show that the ferroresonance disturbance can occur for the power transformers installed in the wind farms although the transformer terminals are interconnected,and neither side of the transformer is isolated.Furthermore,as a mitigation method of ferroresonance overvoltage,the proposed STATCOM controller succeeds in improving the system voltage profile and speed profile of the wind turbine as well as protecting the system components against the ferroresonance overvoltage.展开更多
A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high per...A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted.展开更多
This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbin...This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.展开更多
The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting a...The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting as the prospects are promising, especially in relation with smart grids technologies. The deregulation of the electricity market, the high cost of storage, and the new laws on energy transition incite some significant users (collectivities, cities, regions, etc.) to form themselves into local producers in order to gain autonomy and reduce their energy bills. Thus, they may have their own sources (classic and/or renewable energy sources) to satisfy their needs and sell their excess production instead of storing it. In this idea, the territorial interconnection principle offers several advantages (energy efficiency, environmental protection, better economic balance). The main challenge of such systems is to ensure good energy management. Therefore, power distribution strategy must be implemented by matching the supply and the demand. Such systems have to be financially viable and environmentally sustainable. This allows among others to reduce the electricity bill and limit the systematic use of the national power network, typically using non-renewable sources, and thereby support sustainable development. This paper presents an original model for aid-decision in terms of grid configurations and control powers exchanged between interconnected territories. The model is based on Petri nets. Therefore, an iterative algorithm for power flow management is based on instantaneous gap between the production capability (photovoltaic, wind) and the demand of each user. So, in order to validate our model, we selected three French regions: the PACA region, the Champagne-Ardenne region and the Lorraine region. Due to their policy, their geographical and climatic features, we opted for two renewable sources: “wind” and “photovoltaic”. The numerical simulations are performed using the instantaneous productions of each region and their energy demand for a typical summer day. A detailed economic analysis is performed for two scenarios (with or without interconnections). The results show that the use of renewable energy in an interconnection context (i.e. pooling), offers serious economic and technical advantages.展开更多
Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By wi...Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.展开更多
This paper is the Part Ⅱ of studying the budget of kinetic energy of the typhoon No. 7507, with the emphasis on the conversion between the kinetic energy of the divergent winds and that of the non-divergent winds, an...This paper is the Part Ⅱ of studying the budget of kinetic energy of the typhoon No. 7507, with the emphasis on the conversion between the kinetic energy of the divergent winds and that of the non-divergent winds, and its relationship to the heating field. The main findings have been brought out as follows.展开更多
Under the trends to using renewable energy sources as alternatives to the traditional ones,it is important to contribute to the fast growing development of these sources by using powerful soft computing methods.In thi...Under the trends to using renewable energy sources as alternatives to the traditional ones,it is important to contribute to the fast growing development of these sources by using powerful soft computing methods.In this context,this paper introduces a novel structure to optimize and control the energy produced from a variable speed wind turbine which is based on a squirrel cage induction generator(SCIG)and connected to the grid.The optimization strategy of the harvested power from the wind is realized by a maximum power point tracking(MPPT)algorithm based on fuzzy logic,and the control strategy of the generator is implemented by means of an internal model(IM)controller.Three IM controllers are incorporated in the vector control technique,as an alternative to the proportional integral(PI)controller,to implement the proposed optimization strategy.The MPPT in conjunction with the IM controller is proposed as an alternative to the traditional tip speed ratio(TSR)technique,to avoid any disturbance such as wind speed measurement and wind turbine(WT)characteristic uncertainties.Based on the simulation results of a six KW-WECS model in Matlab/Simulink,the presented control system topology is reliable and keeps the system operation around the desired response.展开更多
For the past few years,wind energy is the most popular non-traditional resource among renewable energy resources and it’s significant to make full use of wind energy to realize a high level of generating power.Moreov...For the past few years,wind energy is the most popular non-traditional resource among renewable energy resources and it’s significant to make full use of wind energy to realize a high level of generating power.Moreover,diverse maximum power point tracking(MPPT)methods have been designed for varying speed operation of wind energy conversion system(WECS)applications to obtain optimal power extraction.Hence,a novel and metaheuristic technique,named enhanced atom search optimization(EASO),is designed for a permanent magnet synchronous generator(PMSG)based WECS,which can be employed to track the maximum power point.One of the most promising benefits of this technique is powerful global search capability that leads to fast response and high-quality optimal solution.Besides,in contrast with other conventional meta-heuristic techniques,EASO is extremely not relying on the original solution,which can avoid sinking into a low-quality local maximum power point(LMPP)by realizing an appropriate trade-off between global exploration and local exploitation.At last,simulations employing two case studies through Matlab/Simulink validate the practicability and effectiveness of the proposed techniques for optimal proportional-integral-derivative(PID)control parameters tuning of PMSG based WECS under a variety of wind conditions.展开更多
A robust optimal framework is designed herein to mitigate the oscillatory dynamics in a doubly fed induction generator(DFIG)even in the presence of network disturbances and input variation.To address uncertain dynamic...A robust optimal framework is designed herein to mitigate the oscillatory dynamics in a doubly fed induction generator(DFIG)even in the presence of network disturbances and input variation.To address uncertain dynamics,herein,a novel transformation formula is developed for a wind energy conversion system.An unscented Kalman filter is applied to estimate the un-measured internal states of the wind energy conversion system using terminal measurements.The detailed convergence and stability analyses of the presented framework are investigated to validate its effectiveness.Additionally,comparative modal analyses are carried out to demonstrate the improvement in the damping of critical low-frequency oscillatory modes using the presented framework.The simulation results demonstrate satisfactory performance under various operating scenarios,such as increasing and decreasing wind speed and varying the terminal voltage.The comparative performance is demonstrated to validate the effectiveness of the presented framework over that of the state-of-the-art frameworks.展开更多
This paper proposes the generation scheduling approach for a microgrid comprised of conventional generators, wind energy generators, solar photovoltaie (PV) systems, battery storage, and electric vehicles. The elect...This paper proposes the generation scheduling approach for a microgrid comprised of conventional generators, wind energy generators, solar photovoltaie (PV) systems, battery storage, and electric vehicles. The electrical vehicles (EVs) play two different roles: as load demands during charging, and as storage units to supply energy to remaining load demands in the MG when they are plugged into the microgrid (MG). Wind and solar PV powers are intermittent in nature; hence by including the battery storage and EVs, the MG becomes more stable. Here, the total cost objective is minimized considering the cost of conventional generators, wind generators, solar PV systems and EVs. The proposed optimal scheduling problem is solved using the hybrid differential evolution and harmony search (hybrid DE-HS) algorithm including the wind energy generators and solar PV system along with the battery storage and EVs. Moreover, it requires the least investment.展开更多
文摘This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.
基金Supported by the National Basic Research Program("973" Program)(2007CB210303)the Research Funding of Nanjing University of Aeronautics and Astronautrics(NP2011011)
文摘The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system.
基金Project supported by Delta Power Electronic Science and Education Development (Grant No.DRES2007002)
文摘A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.
基金supported by Ministry of Science and Technology of Peoples Republic of China(No.2019YFE0104800).
文摘In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.
文摘In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.
文摘A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.
文摘Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.
基金supported by Science and Engineering Research Board,India under SERB POWER FELLOWSHIP Grant (No.SPF/2021/000071)project Grant (No.EEQ/2021/000057)extended by SERB,India。
文摘In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power extraction from the permanent magnet synchronous generator(PMSG).The bridgeless topology enables the elimination of the front-end diode bridge rectifier(DBR).Moreover,the converter has fewer components,simple control,and high efficiency,making it suitable for a small-scale WECS.A squirrel cage induction motor(SCIM)is used to emulate a MOD-2 wind turbine to implement the PMSG-based WECS.A direct-drive eight-pole PMSG is used in this study;thus,a low-input-voltage system is designed.The converter is designed to operate in the discontinuous inductor current mode(DICM)for inherent power factor correction(PFC)and the maximum power point tracking(MPPT)is achieved through the tip-speed ratio(TSR)following.The performance of the developed system is analyzed through simulation,and a 500 W hardware prototype is developed and tested in different wind speed conditions.
文摘Wind energy has been identified as the second dominating source in the world renewable energy generation after hydropower.Conversion and distribution of wind energy has brought technology revolution by developing the advanced wind energy conversion system(WECS)including multilevel inverters(MLIs).The conventional rectifier produces ripples in their output waveforms while the MLI suffers from voltage balancing issues across the DC-link capacitor.This paper proposes a simplified proportional integral(PI)-based space vector pulse width modulation(SVPWM)to minimize the output waveform ripples,resolve the voltage balancing issue and produce better-quality output waveforms.WECS experiences various types of faults particularly in the DC-link capacitor and switching devices of the power converter.These faults,if not detected and rectified at an early stage,may lead to catastrophic failures to the WECS and continuity of the power supply.This paper proposes a new algorithm embedded in the proposed PI-based SVPWM controller to identify the fault location in the power converter in real time.Since most wind power plants are located in remote areas or offshore,WECS condition monitoring needs to be developed over the internet of things(IoT)to ensure system reliability.In this paper,an industrial IoT algorithm with an associated hardware prototype is proposed to monitor the condition of WECS in the real-time environment.
文摘We present the ferroresonance overvoltage mitigation concerning the power systems of the grid-connectcd wind energy conversion systems(WECSs).WECS is considered based on a doubly-fed induction generator(DFIG).Ferroresonance overvoltage associated with a single-pole outage of the line breaker is mitigated by fast regulating the reactive power using the static compensator(STATCOM).STATCOM controller is introduced,in which t>\o incorporated proportional-integral(PI)controllers are optimally tuned using a modified flow-er pollination algorithm(MFPA)as an optimization technique.To show the capability of the proposed STATCOM controller in mitigating the ferroresonance overvoltage,two test cases are introduced,which are based on the interconnection status of the power transformer used with the grid-connected DFIGs.The results show that the ferroresonance disturbance can occur for the power transformers installed in the wind farms although the transformer terminals are interconnected,and neither side of the transformer is isolated.Furthermore,as a mitigation method of ferroresonance overvoltage,the proposed STATCOM controller succeeds in improving the system voltage profile and speed profile of the wind turbine as well as protecting the system components against the ferroresonance overvoltage.
文摘A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted.
文摘This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.
文摘The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting as the prospects are promising, especially in relation with smart grids technologies. The deregulation of the electricity market, the high cost of storage, and the new laws on energy transition incite some significant users (collectivities, cities, regions, etc.) to form themselves into local producers in order to gain autonomy and reduce their energy bills. Thus, they may have their own sources (classic and/or renewable energy sources) to satisfy their needs and sell their excess production instead of storing it. In this idea, the territorial interconnection principle offers several advantages (energy efficiency, environmental protection, better economic balance). The main challenge of such systems is to ensure good energy management. Therefore, power distribution strategy must be implemented by matching the supply and the demand. Such systems have to be financially viable and environmentally sustainable. This allows among others to reduce the electricity bill and limit the systematic use of the national power network, typically using non-renewable sources, and thereby support sustainable development. This paper presents an original model for aid-decision in terms of grid configurations and control powers exchanged between interconnected territories. The model is based on Petri nets. Therefore, an iterative algorithm for power flow management is based on instantaneous gap between the production capability (photovoltaic, wind) and the demand of each user. So, in order to validate our model, we selected three French regions: the PACA region, the Champagne-Ardenne region and the Lorraine region. Due to their policy, their geographical and climatic features, we opted for two renewable sources: “wind” and “photovoltaic”. The numerical simulations are performed using the instantaneous productions of each region and their energy demand for a typical summer day. A detailed economic analysis is performed for two scenarios (with or without interconnections). The results show that the use of renewable energy in an interconnection context (i.e. pooling), offers serious economic and technical advantages.
文摘Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.
文摘This paper is the Part Ⅱ of studying the budget of kinetic energy of the typhoon No. 7507, with the emphasis on the conversion between the kinetic energy of the divergent winds and that of the non-divergent winds, and its relationship to the heating field. The main findings have been brought out as follows.
文摘Under the trends to using renewable energy sources as alternatives to the traditional ones,it is important to contribute to the fast growing development of these sources by using powerful soft computing methods.In this context,this paper introduces a novel structure to optimize and control the energy produced from a variable speed wind turbine which is based on a squirrel cage induction generator(SCIG)and connected to the grid.The optimization strategy of the harvested power from the wind is realized by a maximum power point tracking(MPPT)algorithm based on fuzzy logic,and the control strategy of the generator is implemented by means of an internal model(IM)controller.Three IM controllers are incorporated in the vector control technique,as an alternative to the proportional integral(PI)controller,to implement the proposed optimization strategy.The MPPT in conjunction with the IM controller is proposed as an alternative to the traditional tip speed ratio(TSR)technique,to avoid any disturbance such as wind speed measurement and wind turbine(WT)characteristic uncertainties.Based on the simulation results of a six KW-WECS model in Matlab/Simulink,the presented control system topology is reliable and keeps the system operation around the desired response.
基金The authors appreciatively acknowledge the support of rapid device state variation based system device invention of a training device for live-work electricity meter installation without electric shocks(YNZC202003110011)National Natural Science Foundation of China(NSFC)under Grant(61902039).
文摘For the past few years,wind energy is the most popular non-traditional resource among renewable energy resources and it’s significant to make full use of wind energy to realize a high level of generating power.Moreover,diverse maximum power point tracking(MPPT)methods have been designed for varying speed operation of wind energy conversion system(WECS)applications to obtain optimal power extraction.Hence,a novel and metaheuristic technique,named enhanced atom search optimization(EASO),is designed for a permanent magnet synchronous generator(PMSG)based WECS,which can be employed to track the maximum power point.One of the most promising benefits of this technique is powerful global search capability that leads to fast response and high-quality optimal solution.Besides,in contrast with other conventional meta-heuristic techniques,EASO is extremely not relying on the original solution,which can avoid sinking into a low-quality local maximum power point(LMPP)by realizing an appropriate trade-off between global exploration and local exploitation.At last,simulations employing two case studies through Matlab/Simulink validate the practicability and effectiveness of the proposed techniques for optimal proportional-integral-derivative(PID)control parameters tuning of PMSG based WECS under a variety of wind conditions.
基金supported in part by the National Natural Science Foundation of China(No.62103296)the UK Engineering and Physical Sciences Research Council(No.EP/T021713/1)the Shanxi Scholarship Council of China(No.2023-062).
文摘A robust optimal framework is designed herein to mitigate the oscillatory dynamics in a doubly fed induction generator(DFIG)even in the presence of network disturbances and input variation.To address uncertain dynamics,herein,a novel transformation formula is developed for a wind energy conversion system.An unscented Kalman filter is applied to estimate the un-measured internal states of the wind energy conversion system using terminal measurements.The detailed convergence and stability analyses of the presented framework are investigated to validate its effectiveness.Additionally,comparative modal analyses are carried out to demonstrate the improvement in the damping of critical low-frequency oscillatory modes using the presented framework.The simulation results demonstrate satisfactory performance under various operating scenarios,such as increasing and decreasing wind speed and varying the terminal voltage.The comparative performance is demonstrated to validate the effectiveness of the presented framework over that of the state-of-the-art frameworks.
文摘This paper proposes the generation scheduling approach for a microgrid comprised of conventional generators, wind energy generators, solar photovoltaie (PV) systems, battery storage, and electric vehicles. The electrical vehicles (EVs) play two different roles: as load demands during charging, and as storage units to supply energy to remaining load demands in the MG when they are plugged into the microgrid (MG). Wind and solar PV powers are intermittent in nature; hence by including the battery storage and EVs, the MG becomes more stable. Here, the total cost objective is minimized considering the cost of conventional generators, wind generators, solar PV systems and EVs. The proposed optimal scheduling problem is solved using the hybrid differential evolution and harmony search (hybrid DE-HS) algorithm including the wind energy generators and solar PV system along with the battery storage and EVs. Moreover, it requires the least investment.