Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been c...Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.展开更多
The dust generated in arid areas of the planet is a very important source of particulate matter in the air, especially favoured by the presence of winds that can raise erodible material from the surface. These particl...The dust generated in arid areas of the planet is a very important source of particulate matter in the air, especially favoured by the presence of winds that can raise erodible material from the surface. These particles have an important influence when making an assessment of the air quality, due to its direct and indirect impact on public health. In this work, we reproduce episodes of aeolian dusts in the desert areas of Peru and Chile, where high dust concentration events are common and many mining industries are located. The differentiation of the contribution of particulate matter from Aeolian dusts and mining activities of the area is an important issue, as well as trying to forecast these events. For this purpose, we have calculated an erodibility factor at high resolution that, combined with WRF meteorological output and the GOCART dust scheme, gives the emission of particulate matter. We have introduced the emissions in the photochemical model CMAQ, which determines the concentrations in the different domains, and we have observed that the natural dust contributes greatly to pollution in the area, exceeding permissible limit values in the area of Paracas in Peru, and with contributions of up to 23% of the total particulate matter in the city of Calama in Chile, resulting non-negligible values for the evaluation of air quality.展开更多
基金supported by the National Natural Science Foundation of China (41201441,41371363,41301501)Foundation of Director of Institute of Remote Sensing and Digital Earth,Chinese Academy of Science (Y4SY0200CX)Guangxi Key Laboratory of Spatial Information and Geomatics (1207115-18)
文摘Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.
文摘The dust generated in arid areas of the planet is a very important source of particulate matter in the air, especially favoured by the presence of winds that can raise erodible material from the surface. These particles have an important influence when making an assessment of the air quality, due to its direct and indirect impact on public health. In this work, we reproduce episodes of aeolian dusts in the desert areas of Peru and Chile, where high dust concentration events are common and many mining industries are located. The differentiation of the contribution of particulate matter from Aeolian dusts and mining activities of the area is an important issue, as well as trying to forecast these events. For this purpose, we have calculated an erodibility factor at high resolution that, combined with WRF meteorological output and the GOCART dust scheme, gives the emission of particulate matter. We have introduced the emissions in the photochemical model CMAQ, which determines the concentrations in the different domains, and we have observed that the natural dust contributes greatly to pollution in the area, exceeding permissible limit values in the area of Paracas in Peru, and with contributions of up to 23% of the total particulate matter in the city of Calama in Chile, resulting non-negligible values for the evaluation of air quality.